Advanced Electronic Systems (524H1)
Note to prospective students: this content is drawn from our database of current courses and modules. The detail does vary from year to year as our courses are constantly under review and continuously improving, but this information should give you a real flavour of what it is like to study at СÀ¶ÊÓƵ.
We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.
Advanced Electronic Systems
Module 524H1
Module details for 2024/25.
15 credits
FHEQ Level 7 (Masters)
Module Outline
The goal of the Advanced Electronic Systems module is to provide students an exposure to the fascinating world of analogue and mixed-signal signal processing. As part of the course, students will build analogue systems using analogue ICs and study their macro models, characteristics and limitations.
Module Outline
In this course students will learn:
• internal operation of analogue integrated circuits including noise
• operation of switched-capacitor circuits including comparator, filters and convertors
• Practical experiments using industry standard hardware for data acquisition
• Sample and Hold circuits
• DAC and ADC oversampling convertors
• phase-locked loop circuits
• Develop practical skills within the analogue and mixed-signal electronics laboratory work.
Module Topics
Introduction and Op-amp abstraction, feedback
Op-amp circuits
Noise in Op-amps
Negative Feedback
Positive Feedback and comparators
ADC noise
Multi-vibrators and Comparators II
Second Order Analogue Filters
Switch capacitor filters
Universal Active filters.
VCO and PLL
Charge Pumps and DC to DC converters
Advanced topics in electronics ( Memristors).
The syllabus thus addresses the AHEP4 Learning outcomes: [M1, M2, M4, M5, M6, M11, M12, M13], [C1, C2, C4, C5, C6, C11, C12, C13]
Library
Analogue Integrated Circuit Design - D Jones, K. Martin
Demystifying switch capacitor circuits - M Liu
Module learning outcomes
Apply a comprehensive knowledge of engineering principles and industry standards to design and critically analyse complex electronic circuits including VCO/ phase-locked-loop used in applications such as modulators in modern communication systems
Systemically identify and analyse the limitations on the design of complex analogue integrated circuits, using literature and mathematical principles to calculate the effects of errors and devise advanced circuit techniques to improve the overall system performance
Apply an integrated/systems approach to develop and understand advanced analogue system techniques including switch capacitor and complex filter using operational amplifiers
Learn how to develop a macromodel for an IC based on its terminal characteristics, I/O characteristics, DC transfer characteristics, frequency response, stability characteristic and sensitivity characteristic and be able to perform fault diagnosis of an electronic system including the selection of the appropriate components in a laboratory environment
Type | Timing | Weighting |
---|---|---|
Unseen Examination | Semester 1 Assessment | 50.00% |
Coursework | 50.00% | |
Coursework components. Weighted as shown below. | ||
Report | T1 Week 6 | 40.00% |
Report | T1 Week 11 | 60.00% |
Timing
Submission deadlines may vary for different types of assignment/groups of students.
Weighting
Coursework components (if listed) total 100% of the overall coursework weighting value.
Term | Method | Duration | Week pattern |
---|---|---|---|
Autumn Semester | Lecture | 2 hours | 11111111110 |
Autumn Semester | Laboratory | 2 hours | 01011011100 |
Autumn Semester | Lecture | 1 hour | 00000000001 |
How to read the week pattern
The numbers indicate the weeks of the term and how many events take place each week.
Dr Elizabeth Rendon-Morales
Assess convenor
/profiles/345380
Please note that the University will use all reasonable endeavours to deliver courses and modules in accordance with the descriptions set out here. However, the University keeps its courses and modules under review with the aim of enhancing quality. Some changes may therefore be made to the form or content of courses or modules shown as part of the normal process of curriculum management.
The University reserves the right to make changes to the contents or methods of delivery of, or to discontinue, merge or combine modules, if such action is reasonably considered necessary by the University. If there are not sufficient student numbers to make a module viable, the University reserves the right to cancel such a module. If the University withdraws or discontinues a module, it will use its reasonable endeavours to provide a suitable alternative module.