Machine Learning (934G5)
Note to prospective students: this content is drawn from our database of current courses and modules. The detail does vary from year to year as our courses are constantly under review and continuously improving, but this information should give you a real flavour of what it is like to study at СÀ¶ÊÓƵ.
We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.
Machine Learning
Module 934G5
Module details for 2024/25.
15 credits
FHEQ Level 7 (Masters)
Pre-Requisite
Mathematics & Computational Methods for Complex Systems (817G5) or equivalent mathematical module / prior experience.
[MComp Computer Science students are required to take this module if G6078 Game Design and Development was taken in year 2].
Module Outline
This module exposes students to advanced techniques in machine learning. A systematic treatment will be used based on the following three key ingredients: tasks, models and features. Students will be introduced to both regression and classification and concepts such as model performance, learnability and computational complexity will be emphasized. Taught techniques will include: probabilistic and non-probabilistic classification and regression methods and reinforcement learning approaches including the non-linear variants using kernel methods. Techniques for pre-processing of the data (including PCA) will be introduced. Students will be expected to be able to implement, develop and deploy the techniques to real-world problems.
Prerequisite: Mathematics & Computational Methods for Complex Systems (817G5) or equivalent mathematical module / prior experience.
(MSc Computer Science (conversion) students can only taken this module if 817G5 Mathematics & Computational Methods for Complex Systems is taken in Semester 1).
Module learning outcomes
Identify the strengths and weaknesses of state-of-the-art supervised, unsupervised, and reinforcement machine learning models including multi-layer perceptron, support vector machine, random forest, K-means, PCA, and Q-learning.
Critically analyse and implement several stochastic optimization methods ranging from stochastic gradient descent, stochastic variance reduction, to adaptive gradient methods for training machine learning models on big data.
Demonstrate knowledge of the fundamental principles of advanced machine learning models including probabilistic graphical models and statistical network models.
Apply developed classification/regression techniques with stochastic optimization to real-world problems, including extracting deep convolutional neural network features and incorporating prior knowledge.
Type | Timing | Weighting |
---|---|---|
Coursework | 100.00% | |
Coursework components. Weighted as shown below. | ||
Report | A2 Week 1 | 100.00% |
Timing
Submission deadlines may vary for different types of assignment/groups of students.
Weighting
Coursework components (if listed) total 100% of the overall coursework weighting value.
Term | Method | Duration | Week pattern |
---|---|---|---|
Spring Semester | Laboratory | 1 hour | 11111111111 |
Spring Semester | Lecture | 2 hours | 11111111111 |
How to read the week pattern
The numbers indicate the weeks of the term and how many events take place each week.
Dr Temitayo Olugbade
Assess convenor
/profiles/272464
Please note that the University will use all reasonable endeavours to deliver courses and modules in accordance with the descriptions set out here. However, the University keeps its courses and modules under review with the aim of enhancing quality. Some changes may therefore be made to the form or content of courses or modules shown as part of the normal process of curriculum management.
The University reserves the right to make changes to the contents or methods of delivery of, or to discontinue, merge or combine modules, if such action is reasonably considered necessary by the University. If there are not sufficient student numbers to make a module viable, the University reserves the right to cancel such a module. If the University withdraws or discontinues a module, it will use its reasonable endeavours to provide a suitable alternative module.