
Strong Bisimulations for a Calculus of Broadcasting Systems

�

M. Hennessy, J. Rathke

University of Sussex

January 17, 1995

Abstract

We develop a version of barbed bisimulation equivalence for the broadcast calculus CBS

and characterise the associated congruence using a new notion of noisy bisimulation. We

then give two syntactic characterisations of noisy bisimulation equivalence over �nite CBS

terms. The �rst is an equational characterisation over closed terms but in this setting an

in�nitary inference rule is required to accommodate processes of the form x 2 S?t. The

Pattern matching in value-passing calculi is usually

the judgements of the proof system take the form

b � T = U

where b is a boolean expression over the data domain. Intuitively this means that T is seman-

tically equivalent to U in all instantiations or worlds which satisy b. The proof of completeness

here relies on using symbolic bisimulations, [3] and therefore we have to present an abstract

operational semantics and de�ne a notion of symbolic bisimulation appropriate for this sub-

language.

Pattern-matching is reintroduced in Sections 5 and 6, each dealing with modi�cations of

the proof systems of Sections 3 and 4 respectively. Having done this we now have enough

expressive power to reason about �nite CBS terms. This is outlined brie
y in the �nal section,

Section 7.

Related work:

Many programming examples of CBS in practice can be found in [14, 15]. These examples

exploit the power of the broadcast operator and serve to illustrate how various algorithms

can be formulated in broadcasting terms with relative ease. The only proof system we are

aware of for CBS is that given in [17] which contains a sound and complete proof system for

the conventional notion of strong bisimulation applied to an abstract version of CBS without

value-passing. Motivations for and the development of symbolic bisimulations, which are central

to our completess proofs, are presented in [3] while examples of their use are found in [4, 7].

2 The Broadcast Calculus

The calculus we consider is a minor variation on that of [14]. The syntax may be described by

the following grammar:

T ::= O j e!T j x 2 S?T j b� T j

X

i2I

T

i

j T jT j T

(f;g)

j A(~v):

It has many of the usual operators of CCS , [8], including the nil process O, parallel operator j,

indexed sums

P

i2I

and process constants A, from some prede�ned set, which will used to de�ne

recursive processes. Input pre�xes are guarded by sets of values, the process x 2 S?P may only

receive values present in S. In this language communication is achieved by broadcasting values

to all processes in the environment. The process e!P broadcasts the value of the expression

e while x 2 S?P is a process which, on hearing the value v proceeds to act like the process

P [v=x] providing v 2 S; otherwise the value is ignored. The construct b� T allows the testing

of values while T

(f;g)

is a form of scoping or translation of data. Let V al represent the set

of values which can be broadcast and � a special value not in V al; � represents noise in the

system, i.e. broadcasts of values which can not be deciphered by any process. Then in T

(f;g)

both f and g are strict functions from V al [� to V al [� in the sense that f(�) = g(�) = � .

They are used to implement restriction and renaming and allow messages to be made local

to particular processes. The strictness condition enforces the constraint that noise cannot be

translated into an interpretable value.

This syntax presupposes an set of data expressions V alexp, ranged over by e and a set of

boolean expressions BoolExp, ranged over by b. We do not give a precise syntax for these

languages but simply assume they have a minimal set of properties. Thus we assume V alexp

contains the set of values V al [f�g and a set of variables V ar, ranged over by x, and that

for each pair e; e

0

of value expressions, e = e

0

2 BoolExp. We also assume that evaluations,

functions � from V ar to V al, behave in a reasonable manner when extended to V alExp and

3

BoolExp; when e (or b) is closed, i.e.

Discard Input Output

O

w:

�! O

w 62 S

x 2 S?P

w:

�! x 2 S?P

v 2 S

x 2 S?P

v?

�! P [v=x]

e!P

w:

�! e!P

[[e]] = w

e!P

w!

�! P

P

w:

�! P Q

w:

�! Q

P +Q

w:

�! P + Q

P

v?

�! P

0

P +Q

v?

�! P

0

P

w!

�! P

0

P +Q

w!

�! P

0

[[b]] = false

b� P

w:

�! b� P

P

w:

�! P

b� P

w:

�! b� P

P

v?

�! P

0

[[b]] = true

b� P

v?

�! P

0

P

w!

�! P

0

[[b]] = true

b� P

w!

�! P

0

P [~v=~x]

w:

�!

A(~v)

w:

�!

P [~v=~x]

v?

�! P

0

A(~v)

v?

�! P

0

P [~v=~x]

w!

�! P

0

A(~v)

w!

�! P

0

P

gw:

�! P

0

P

(f;g)

w:

�! P

0

(f;g)

P

gv?

�! P

0

P

(f;g)

v?

�! P

0

(f;g)

P

w!

�! P

0

P

(f;g)

fw!

�! P

0

(f;g)

P

�

�! P

0

Q

�

�! Q

0

P jQ

���

�! P

0

jQ

0

� � � 6=?

� w! w? w :

w! ? w! w!

w? w! w? w?

w : w! w? w :

Figure 1: Operational semantics for closed agents (upto symmetry of + operator).

Based on this operational semantics we wish to develop a version of strong bisimulation, [8],

appropriate for CBS . However there is quite a range of possible de�nitions of when a relation

over agents should be considered a strong bisimulation. Should only input and output moves

be considered ? Should discards also be taken into account ? If so under what circumstances, if

any, should input moves be allowed to be matched by discards ? Rather than develop a range

of di�erent theories we take the approach advocated in [16] by de�ning a version of barbed

bisimulation for CBS, �

barb

. This is straightforward and uncontroversial since it relies only on

1. a notion of reduction, which we have in

� !

�!,

2. a notion of when agents have the ability to produce values, which we have in

v!

�!.

5

The \correct" version of strong bisimulation for CBS will then be that version, if it exists,

which coincides with the CBS congruence generated by �

barb

.

For any value v let P # v mean that P

v!

�! P

0

for some P

0

. Then a symmetric relation R

between agents is called a barbed bisimulation if whenever (P;Q) 2 R then:

if P

� !

�! P

0

then 9Q

0

:Q

� !

�! Q

0

and P

0

RQ

0

if P # v then Q # v:

We use �

barb

to denote the maximal such relation which is obviously an equivalence. However

it is preserved by very few of the operators of CBS and is not very interesting as a semantic

equivalence. Instead we concentrate on the associated congruence.

De�nition 2.2 For agents P and Q let P �

c

barb

Q if C[P] �

barb

C[Q] for every CBS context

C[].

Proof. As in [8], to show that noisy bisimulation is preserved by composition, say, we simply

let

R = f(P jR); (QjR) j for all P;Q;R such that P �

n

Qg

and show that R is a noisy bisimulation. The other operators are treated in a similar way. 2

We can also capture noisy bisimulation equivalence from�

barb

using static contexts, i.e. contexts

in which the `hole' does not appear as a summand in a choice.

Proposition 2.5 If C[P] �

barb

C[Q] for every static context C[] then P �

n

Q.

Proof. Given P;Q de�ned over a value set V al, we suppose that C[P] �

barb

C[Q] for every

static context C and we assume the existence of a larger value set V al

+

def

= V al[V al

0

Unlike strong bisimulation it turns out that noisy bisimulation is not preserved by the choice

operator +. For example

x 2 V al?O �

n

O

but

v!O+ x 2 V al?O 6�

n

v!O+O

because the agent on the right hand side can perform the sequence of actions w??

This property will prove invaluable in developing the axiomatisation of noisy congruence over

SA. For convenience let us introduce the notation P

:

�! to denote the fact that P can discard.

The axioms required to characterise strong bisimulation equivalence over CCS terms are

simply the idempotency, symmetry and associativity of + together with the fact that O is a

zero for +, which we call A:

X +O = X

X +X = X

X + Y = Y +X

(X + Y) + Z = X + (Y + Z):

In the setting of CBS this is insu�cient. For example

� !(v!P + x?v!P) '

n

� !v!P

because

v!P + x?v!P �

n

v!P:

Indeed if Q is any process which can discard, i.e. Q

:

�!, then

Q+ x?Q �

n

Q

because Q can discard any value. This in turn means that

v!(Q+ x?Q) '

n

v!Q:

This phenomenon can be captured by a new axiom schema, Noisy:

Noisy: v!(P

!

+ x?P

!

) = v!P

!

where P

!

is a meta-variable standing for any agent which can discard. For the present sublan-

guage SA this means any closed term of the form

X

i2I

v

i

!P

i

for some �nite index set I . We use A

N

to denote the set of equations A together with the

axiom schema Noisy.

There is an added complication for CBS which also exists for standard value-passing pro-

cessing algebras, [4]. In a �-algebra the congruence generated by a set of equations is easily

characterised in terms of substitution of equals for equals and the application of instances of

the axioms. For agents in CBS more powerful rules are required. For although we can infer

v!P '

n

v!Q from P '

n

Q it is not possible, in general, to infer x?T '

n

x?U from any �nite set

of statements about agents; we can not require the establishment of T '

n

U because these are

open terms and the proof system only allows the manipulation of closed terms.

To overcome this problem, following [5], we introduce an in�nitary proof rule:

T [v=x] = U [v=x] for every v 2 V al

x?T = x?U

In fact because the operational semantics we have given to CBS is an early operational seman-

tics, [4, 9] we need a more complicated version of this rule:

� !T [v=x] +

P

j2J

� !U

j

[v=x] =

P

j2J

� !U

j

[v=x]

EQUIV

T = T

T = U

U = T

T = U U = V

T = V

AXIOM

T = U 2 AX

T� = U�

CONG

T

1

= U

1

T

2

= U

2

T

1

+ T

2

= U

1

+ U

2

�-CONV

x?T = y?T [y=x]

y 62 fv(T)

cl-INPUT

�

EQUIV

tt � T = T

b � T = U

b � U = T

b � T = U b � U = V

b � T = V

AXIOM

T = U

Ident : X +O = X

Idemp : X +X = X

Symm : X + Y = Y +X

Assoc : (X + Y) + Z = X + (Y + Z)

Noisy : e!(T

!

+ x?T

!

) = e!T

!

if x 62 fv(T

!

)

Figure 4: Axioms A + Noisy

x 62 fv(P) the agent P [v=x] coincides with P . Also since P is P

!

we know P

v?

�!6 and therefore

P

v:

�! P , which is the required match for P + x?P

v?

�! P [v=x]. 2

Proposition 4.2 (Soundness) If A

N

` b � T = U and � j= b then T� '

n

U�.

Proof. It is su�cient to check that all of the individual rules and axioms are sound which is

straightforward; the only novelty is the axiom schema Noisy which is treated in the previous

Lemma. 2

In order to prove the completeness of our proof system we employ the techniques of [4]

which unfortunately requires a notion of symbolic noisy bisimulations. These are de�ned using

abstract transition relations which are presented in Figure 5. The abstract transitions

b;�

�! are

labelled not only with actions but also with boolean expressions which are intended to act as

guards for the move. Note that in the transition

b;�

�! � has the form :; x? or e!. Intuitively the

move � is enabled whenever the guard b is true. This is made precise in the following

Proposition 4.3

(i) if T�

� !

�! Q then 9b; T

0

� T

b;� !

�! T

0

where � j= b; Q �

�

T

0

� and conversely if T

b;� !

�! T

0

and

� j= b then 9Q � T�

� !

�! Q and Q �

�

T

0

�

(ii) if T�

v!

�! Q then 9b; e; T

0

� T

b;e!

�! T

0

where � j= b; �(e) = v;Q �

�

T

0

� and conversely if

T

b;e!

�! T

0

and � j= b; �(e) = v then 9Q � T�

v!

�! Q and Q �

�

T

0

�

(iii) if T�

v?

�! Q then 9b; x; T

0

�T

b;x?

�! T

0

where x 62 fv(T); � j= b; Q �

�

T

0

�[v=x] and conversely

if T

b;x?

�! T

0

where x 62 fv(T) and � j= b then 9Q � T�

v?

�! Q and Q �

�

T

0

�[v=x]

(iv) T�

v:

�! T� if and only if 9b � � j= b and T

b;:

�! T

Proof. A minor variation on Lemma 3.2 of [4]. 2

We call a �nite set, B, of boolean expressions a b-partition if

W

B � b.

Let S =

�

S

b

j b 2 BoolExp

	

be a family of symmetric relations on terms, indexed by

boolean expressions. De�ne NSB(S) by

(T; U) 2 NSB(S)

b

if whenever T

b

1

;�

�! T

0

(� � x? or e!) with bv(�)\ fv(b; T;U) =

;, there is a b ^ b

1

-partition, B, such that for each b

0

2 B there exists a U

b

2

;�

0

�! U

0

such that b

0

j= b

2

and

- if � � e! then �

0

� e

0

! with b

0

j= e = e

0

and (T

0

; U

0

) 2 S

b

0

12

The exposition of the proof of completeness of our system with respect to symbolic noisy

bisimulation requires, as usual, the ability to rewrite arbitrary terms into special forms. First,

a standard form T is a term of the form

X

i2I

!

b

i

� e

i

!:T

i

+

X

i2I

?

b

i

� x

i

?T

i

for some �nite indexing sets I

?

and I

!

. We call the left hand sum T

!

and the right hand sum T

?

.

It is easy to see that every term can be transformed within the proof system into a standard

form. However the following syntactic form will also be useful.

De�nition 4.5 A process T is said to be a normal form if it has the form

X

i2I

c

i

� (

X

k2I

i

�

ik

:T

ik

)

where c

i

^ c

j

� � whenever i 6= j and

W

I

c

i

= tt.

In order to prove that every term can be transformed into a normal form we �rst state a

few simple facts about the proof system; the proofs are left to the reader.

Proposition 4.6

(i) b j= b

0

implies A ` b � T = b

0

� T

(ii) A ` b� (T + U) = (b� T) + (b� U)

(iii) A ` (b� T) + (b

0

� T) = b _ b

0

� T .

2

Lemma 4.7 For every term T , there exists a normal form nf(T

is a derived rule of the proof system.

Proof. See Proposition 3.7 of [4]. 2

The following notion of a discard condition, DC(T) for a normal form will be useful. This

DC(T) represents the weakest condition under which the normal form T is triggered to discard.

i.e., T

DC(T);:

�! T and whenever T

b;:

�! T then b j= DC(T). Given a normal form T �

P

i2I

c

i

�

(

P

k2I

i

�

ik

:T

ik

) then we de�ne a predicate ?

T

on I by

?

T

(i)

def

= (9k 2 I

i

; x 2 V ar � �

ik

� x?)

and de�ne DC(T)

def

=

V

?

T

(i)

:c

i

.

Although DC is de�ned on normal forms the idea of a discard condition is not exclusive to

them. We have a similar notion for standard forms and the construction of such is somewhat

easier. In fact, we see that these constructions coincide for the two types of syntactic forms.

Lemma 4.9 Let T �

P

I

Proof. The `(' direction is quite simple to prove using Theorem 4.4 so we concentrate on the

`)' direction. One approach to proving this would be to prove the corresponding result about

closed terms and then use Theorem 4.4 to translate to open terms. A more illuminating direct

approach is given here.

We have normal forms for T and U , that is, T �

P

i2I

c

i

� (

P

k2I

i

�

ik

:T

ik

) and U �

P

j

Corollary 4.11 If T; U are standard forms

P

I

c

i

� �

i

:T

i

;

P

J

d

j

� �

j

:U

j

respectively, then

T �

b

n

U if and only if there exists a b-partition, B, such that for x 62 fv(T; U; b

0

) for each b

0

2 B

one of the following holds:

1. (T '

b

0

n

U)

2. (T '

b

0

n

U + x?U) and A

N

` b

0

� U = U

!

3. (T + x?T '

b

0

n

U) and A

N

` b

0

� T = T

!

Proof. We construct nf(T); nf(U) as directed in Lemma 4.7. We know T '

b

n

nf(T) and

U '

b

n

nf(U) by Soundness. Now apply Theorem 4.10 to get the three cases. The �rst case

yields nf(T) '

b

n

nf(U) and transitivity gives T '

b

n

U . In the second case we must show

A ` b

0

� U = U

!

. We have b

0

j= DC(U) and Lemma 4.9 tells us that b

0

j=

V

j2J

?

:d

j

.

It is simple to show that A ` b

0

� U

!

= U

!

. So we need only show A ` b

0

� U

?

= O. To

do this we show that for each j 2 J

?

we have A ` b

0

� d

j

� x

j

?U

j

= O. This is simply a

matter of using ABSURD to get A ` b

0

^ d

j

� x

j

?U

j

= O and then using GUARD to get

A ` b

0

� d

j

� x

j

?U

j

= O.

The last case can be dealt with similarly. 2

The proof of completeness is carried out by induction on a measure of the depth of a term:

- d(O) = 0

- d(x?T) = d(e!T) = 1 + d(T)

- d(b� T) = d(T)

- d(T

1

+ T

2

) = max fd(T

1

); d(T

2

)g

Theorem 4.12 (Completeness) T '

b

n

U implies A

N

` b � T = U

Proof. We assume that T; U are the standard forms

P

i2I

c

i

� �

i

:T

i

;

P

j2J

d

j

� �

j

:U

j

respec-

tively and proceed by induction on d(T) + d(U).

We only show A

N

` b � T

?

= U

?

. The proof of A

N

` b � T

!

= U

!

is similar and is omitted.

Combining both of these we get the required A

N

` b � T = U .

Suppose we can prove

A

N

` b ^ c

i

� U

?

+ c

i

� x

i

?T

i

= U

j

for each i 2 I

?

. Then an application of GUARD will yield

A

N

` b � U

?

+ c

i

� x

i

?T

i

= U

?

Using CONG we can then combine these to get

A

N

` b � U

?

+ T

?

= U

?

and an entirely symmetric argument will give us that

A

N

` b � T

?

= U

?

(= T

?

+ U

?

):

Therefore we only have to ful�l the obligation of showing

A

N

` b ^ c

i

� U

?

+ c

i

� x

i

?T

i

= U

?

17

for an arbitrary i.

Let z be a variable not in fv(b; T;U), let T

z

?

denote

P

I

?

c

i

� z?T

i

[z=x

i

] and T

�

?

denote

P

I

?

c

i

� � !T

i

[z=x

i

]. Let U

z

?

; U

�

?

denote the corresponding terms for U . Consider T

?

c

i

;z?

�!

T

i

[z=x

i

]. Since T '

b

n

U we know there exists a b ^ c

i

-partition, B, such that for each b

0

2 B

there exists a U

d

j

;z?

�! U

j

[z=y

j

] such that b

0

j= d

j

and T

i

[z=x

i

] �

b

0

n

U

j

[z=y

j

]. By Theorem 4.11

there exists a b

0

-partition, B

0

, such that for each b

00

2 B

0

1 T

i

[z=x

i

] '

b

00

n

U

j

[z=y

j

] or

2 T

i

[z=x

i

] '

b

00

n

U

j

[z=y

j

] + x?U

j

[z=y

j

] or

3 T

i

[z=x

i

] + x?T

i

[z=x

i

] '

b

00

n

U

j

[z=y

j

].

In each of these cases we will show how to deduce A

N

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

].

Case 1. We apply induction and then use the rule TAU.

Case 2. We apply induction again to get

A

N

` b

00

� T

i

[z=x

i

] = U

j

[z=y

j

] + x?U

j

[z=y

j

]

In this case we also know that

A

N

` b

00

� U

j

[z=y

j

] = (U

j

[z=y

j

])

!

Using axiom Noisy and TAU will then give

A

N

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

]

Case 3. Symmetric to case 2.

For each b

00

2 B

0

we have proved A

N

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

] so we can use CUT to

obtain A

N

` b

0

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

]. Given that b

0

j= c

i

; b

0

j= d

j

we can use Proposition 4.6

and axiom Idemp to produce

A

N

` b

0

� d

j

� � !U

j

[z=y

j

] = (c

i

� � !T

i

[z=x

i

]) + (d

j

� � !U

j

[z=y

j

])::

Adding in the other summands of U we get

A

N

` b

0

� U

�

?

= U

�

?

+ c

i

� � !T

i

[z=x

i

]

A further application of CUT gives

A

N

` b ^ c

i

� U

�

?

= U

�

?

+ c

i

� � !T

i

[z=x

i

]

Finally, we apply INPUT

�

to get A

N

` b ^ c

i

� U

z

?

= U

z

?

+ c

i

� z?T

i

[z=x

i

]. The result is

obtained now by �-conversion. 2

5 Adding Pattern Matching

In this section we add to the �nite language the pattern matching construct x 2 S?T and show

how the two proof systems have to be adapted.

Let SPA denote the collection of all closed terms or agents generated by adding this

construct to the language of Section 3. With the addition of this construct Lemma 3.1 is no

18

summation the proof system would fail to be complete. For example, in the proof systems for

SA the agents de�ned over the naturals, N ,

x 2 N?(x > 1� P) + x 2 N?(x � 1�

Proof. The soundness is simply a matter of checking the validity of the axioms and that

the new rule preserves the semantic congruence. So we con�ne our outline to the proof of

completeness. Again the proof is by induction on the combined depth of P and Q.

Because of the newly introduced axiom Empty we can assume that any closed term can be

transformed to a patterned standard form, i.e. a term of the form

X

I

e

i

!P

i

+

X

J

x 2 S

j

?T

j

;

where each set S

j

is non-empty. So let us assume that P and Q have the forms

X

I

e

i

!P

i

+

X

J

x 2 S

j

?T

j

;

X

K

e

k

!Q

k

+

X

L

x 2 S

l

?U

l

respectively. It is su�cient to prove that that

A

P

`

cl

X

I

e

i

!P

i

=

X

K

e

k

!Q

k

and

A

P

`

cl

X

J

x 2 S

j

?T

j

=

X

L

x 2 S

l

?U

l

and as an example we consider the latter. To establish this it is su�cient, by symmetry, to

prove for an arbitrary j 2 J that

A

P

`

cl

x 2 S

j

?T

j

+

X

L

x 2 S

l

?U

l

=

X

L

x 2 S

l

?U

l

:

For each v 2 S

j

we know that P

v?

�! T

j

[v=x]. We know that Q

v?

�! U

l

[v=x] for some l 2 L

such that v 2 S

l

and T

j

[v=x] �

n

U

l

[v=x] because P '

n

Q. Let S

j

l

= fv 2 S

j

\ S

l

j U

l

[v=x] �

n

T

j

[v=x]g. This gives a �nite partition fS

j

l

g

l2L

of S

j

such that S

j

l

� S

l

for each l 2 L. Then, by

the idempotency of + and the new axiom Pattern it is su�cient to show for each l 2 L that

A

P

`

cl

x 2 S

j

l

?T

j

+ x 2 S

l

?U

l

= x 2 S

l

?U

l

:

This can be inferred from the rule cl-P-INPUT if we can prove for each v 2 S

j

l

A

P

`

cl

� !T

j

[v=x] + � !U

l

[v=x] = � !U

l

[v=x]:

So let us �x a particular v 2 S

j

l

and see how this can be inferred. We know that v 2 S

l

and

T

j

and a boolean expression b, we say that b is T -uniform if there exists a set K � I

?

such that

b j= b

K

, where b

K

is de�ned

^

i2K

b

i

^

^

i

0

2I

?

�K

:b

i

0

The generalisation of I(P) is de�ned

I(b; T) =

[

fS

i

j i 2 I

?

; b j= b

i

g :

We show that this is a reasonable de�nition by relating I(b; T) to I(T�) where � is an

evaluation such that � j= b.

Lemma 6.1 If b is T -uniform then

� j= b implies I(T�) = I(b; T)

Proof. If b is T -uniform there exists a set K � I

?

such that b j= b

K

. This gives us that

I(b; T) =

S

i2K

S

i

, which is exactly I(T�). 2

Given this then we can present axiom P-Noisy for standard forms

b � � !(T + x 2 S?T) = � !T If x 62 fv(T); b is T -uniform and I(b; T)\ S = ;:

Again we simply write A

P

` b � T = U to mean that b � T = U can be derived from the

axioms in A

P

(A plus P-Noisy, Pattern, and Empty) using the proof system in Figure 3 with

the modi�ed input rule, P-INPUT.

Proposition 6.2 (Soundness)

If A

P

` b � T = U and � j= b then T� '

n

U�:

Proof. We need only show that the modi�ed rules/axioms are sound. The Pattern axiom and

Empty axiom are evident.

For P-Noisy this amounts to showing that T + x 2 S?T �

b

pn

T . Now we know that b is

T -uniform. Thus by Lemma 6.1 � j= b implies I(T�) = I(b; T). Given this we only need to

show that T�+ x 2 S?T� �

n

T� whenever S \ I(T�) = ; for � j= b

0

. This follows easily.

For the rule P-INPUT, suppose � j= b. We need to show that (x 2 S?T)�+ x 2 S

0

?U� '

n

x 2 S

0

?U)�. The only non-trivial move to match is of the form (x 2 S?T)�

v?

�! Q. Here Q

must be of the form T�[v=x] where v 2 S. Since x 62 fv(b) we have that �[v=x] j= b^x 2 S. So

by assumption we have � !T�[v=x]+� !U�[v=x])'

n

� !U�[v=x] which means T�[v=x]�

n

U�[v=x].

We know that S � S

0

and so v 2 S

0

. Therefore (x 2 S

0

?U)�

v?

�! U�[v=x] to match the move

from P . 2

Completeness is somewhat harder to prove and once more we have to appeal to to symbolic

bisimulations. The general approach, and indeed the general outline of the proof, is very

similar to that used in Section 4. However, we have added the pattern sets to the syntax of the

language and therefore changes are necessary both to the de�nition of symbolic bisimulations

and the associated proofs. Moreover the details are su�ciently subtle to warrant an exposition

of the required modi�cations.

We extend our abstract operational semantics to incorporate the pattern sets in Figure 6.

Recalling the abbreviation x?T for the term x 2 V al?T we see that the extension is a conserva-

tive one. The transitions relations are, as before, labelled with boolean values acting as guards.

23

Discard Input Output

O

tt;V al:

�! O

x 2 S?T

tt;V al�S:

�! x 2 S?T

y 62 fv(x 2 S?T)

x 2 S?T

tt;y2S?

�! T [y=x]

e!T

tt;V al:

�! e!T e!T

tt;e!

�! T

T

b;S:

�! T U

b

0

;S

0

:

�! U

T + U

b

0

^b;S\S

0

:

�! T + U

T

b;x2S?

�! T

0

T + U

b;x2S?

�! T

0

T

b;e!

�! T

0

T + U

b;e!

�! T

0

b

0

� T

:b

0

;V al:

�! b

0

� T

T

b;S:

�! T

b

0

� T

b;S:

�! b

0

� T

T

b;x2S?

�! T

0

b

0

� T

b

0

^b;x2S?

�! T

0

T

b;e!

�! T

0

b

0

� T

b

0

^b;e!

�! T

0

Figure 6: Patterned abstract operational semantics

The di�erences occur in transitions of the form

b;x2S?

�! now decorated with the patterned input,

and

b;S:

�! where S records the set of values which may be discarded.

Having changed the abstract operational semantics we consider the changes in the de�nition

of symbolic bisimulation. We give the de�nition of patterned noisy symbolic bisimulations.

Suppose

�

R

b

	

is a family of symmetric relations. Let set(x 2 S?) = set(S :) = S. De�ne

PNSB(R)

b

as follows:

(T; U) 2 PNSB(R)

b

if whenever

- T

b

0

;e!

�! T

0

there exists a b^b

0

-partition, B, such that for each b

00

2 B there exists U

d;e

0

!

�! U

0

such that b

00

j= d; b

00

j= e = e

0

and (T

0

; U

0

) 2 R

b

00

- T

b

0

;x2S?

�! T

0

such that x 62 fv(b; T; U) there exists a b ^ b

0

^ x 2 S-partition, B, such that

for each b

00

2 B there exists U

d;�

�! U

0

with � 2 fx 2 S

0

?; S

0

:g such that b

00

j= d; b

00

j=

x 2 set(�) and (T

0

; U

0

) 2 R

b

00

.

We call

�

R

b

	

a patterned noisy symbolic bisimulation if R

b

� PNSB(R)

b

for each b and denote

the largest such R by

n

�

b

pn

o

. Once again we now use the de�nition of �

b

pn

to de�ne '

b

pn

the

largest congruence contained in �

b

pn

:

T '

b

pn

U if whenever

- T

b

0

;e!

�! T

0

there exists a b^b

0

-partition, B, such that for each b

00

2 B there exists U

d;e

0

!

�! U

0

such that b

00

j= d; b

00

j= e = e

0

and (T

0

; U

0

) 2 R

b

00

- T

b

0

;x2S?

�! T

0

such that x 62 fv(b; T; U) there exists a b ^ b

0

^ x 2 S-partition, B, such that

for each b

00

2 B there exists U

d;x2S

0

�! U

0

such that b

00

j= d; b

00

j= x 2 S

0

and (T

0

; U

0

) 2 R

b

00

.

We see once more that this version of symbolic bisimulation characterises the corresponding

concrete version.

24

Proposition 6.3 For any

where S = I(U�)� I(T�

So for an arbitrary i 2 I

?

we now show

A

P

` b ^ c

i

� U

z

?

= U

z

?

+ c

i

� z 2 S

i

?T

i

[z=x

i

]:

Suppose that T

c

i

;z2S

i

?

�! T

i

[z=x

i

]. Since T '

b

pn

U we know there exists a b^ c

i

^ z 2 S

i

-partition,

B

i

, such that each element of B

i

is of the form b

0

^ z 2 S

i

(where the b

0

partition b ^ c

i

) such

that there exists U

d

j

;z2S

j

?

�! U

j

[z=y

j

] such that b

0

^ z 2 S

i

j= d; b

0

^ z 2 S

i

j= z 2 S

j

and

T

i

[z=x

i

] �

b

0

pn

U

j

[z=y

j

]. The fact that b

0

^ z 2 S

i

j= z 2 S

j

gives us that S

i

� S

j

. This will

Adding in the rest of the U

j

[z=y

j

] for the j 2 J

?

we get

A

P

` b

0

� U

z

?

= U

z

?

+ c

i

� z 2 S

i

?

To accommodate the translation functions we use the following coding de�ned inductively

on terms. Let dom (g) = fv 2 V al j g(v) 6= �g.

- hOi

(f;g)

= O

- he!T i

(f;g)

= f(e[g(~x)=~x])!hT i

(f;g)

- hx 2 S?T i

(f;g)

= x 2 S \ dom (g)?hT i

(f;g)

- hb� T i

(f;g)

= b[g(~x)=~x]� hT i

(f;g)

- h

P

i2I

T

i

i

(f;g)

=

P

i2I

hT

i

i

(f;g)

- hT

(f

0

;g

0

)

i

(f;g)

= hT i

(f �f

0

; g

0

�g)

Proposition 7.2 hT i

(f;g)

'

n

T

(f;g)

:

Proof. Structural induction on T . 2

The identity in Proposition 7.1 can be viewed as

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical

Computer Science 18. Cambridge University Press, 1990.

[2] E. Best, editor. Proceedings CONCUR 93, Hildesheim, volume 715 of Lecture Notes in

Computer Science. Springer-Verlag, 1993.

[3] M. Hennessy and H. Lin. Symbolic bisimulations. Technical Report 1/92, University of

Sussex, 1992.

[4] M. Hennessy and H. Lin. Proof systems for message-passing process algebras. In Best [2],

pages 202{216.

[5] M. Hennessy and G.D. Plotkin. A term model for CCS. In P. Dembi�nski, editor, 9

th

Sym-

posium on Mathematical Foundations of Computer Science, volume 88 of Lecture Notes in

Computer Science, pages 261{274. Springer-Verlag, 1980.

[6] Huimin Lin. A veri�cation tool for value-passing processes. Computer Science Report

8/93, University of Sussex, 1993.

[7] Huimin Lin. Symbolic bisimulations and proof systems for the pi-calculus. Computer

Science Report 7/94, University of Sussex, 1994.

[8] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood

Cli�s, 1989.

[9] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II. Infor-

mation and Computation, 100(1):1{77, 1992.

[10] P. Panangaden and J. Reppy. The relative expressiveness of multiway rendezvous. In

Proceedings of the

