
CS Report 01/2001

Proxy Compilation

�

Matt Newsome and Des Watson

y

fmattn,deswg@cogs.susx.ac.uk

January 2001

Abstra
t

In this paper, we outline new research concerning dynamic compilation of Java applications

in environments where system resources are signi�cantly limited. In such environments, which

include \smart" mobile telephones and Personal Digital Assistants, memory and processor cy-

cles can be scarce, making current techniques for the runtime translation of Java programs

or program fragments inappropriate. We propose an alternative technique, proxy 
ompilation,

which makes use of idle, connected devices on a network to compile code on its behalf.

1 Introdu
tion

The Java programming language[10, 21℄, although 
ommonly asso
iated with Internet programming,

is a general-purpose obje
t-oriented programming language. Many of its features, su
h as the use of

a garbage-
olle
ted memory allo
ation s
heme, a virtual ma
hine exe
ution model and single 
lass

inheritan
e, have been highly lauded within the 
omputer programming industry and a
ademia.

The traditional role of the 
ompiler[1, 13, 42, 23℄ has been to fa
ilitate one-time translation of human-

readable sour
e programs into ma
hine-readable obje
t programs. The generated software is then



order of magnitude. One 
ommon modi�
ation to this s
heme, made in pursuit of faster program

exe
ution, has been to translate JVM 
ode into native



2.1 Major 
omponents

The Java Virtual Ma
hine (JVM) is an abstra
t ma
hine whi
h pro
esses JVM 
lass�les. Su
h


lass�les



the �rst referen
e to that symbol. The delay is generally in pursuit of in
reased exe
ution speed:

not all symbols in a 
lass�le will be referen
ed during exe
ution, so by delaying resolution, fewer

symbols may need to be resolved with less runtime overhead. Additionally, the 
ost of resolution is



The JVM supports arrays as



Some innovative alternatives to the JVM 
lass�le format



3.2 Proxy Compilation

One possible out
ome of the resear
h work des
ribed above 
ould be that, owing to limitations on

available time for the translation of 
lass�les at load-time, the runtime translation of JVM to LVM

is impra
ti
al within a spe
i�
 ROM, RAM or sta
k limit (above whi
h, assumedly, the translation

would be too intrusive or expensive). A suÆ
iently



4 Next Steps

We are 
urrently implementing a dynami
 
ompilation system to allow us to experiment with the

ideas outlined above. The system is resear
h-driven; 
onsequently, we plan to support representative,

but minimal Java programs. This implies supporting a subset of the Java 2 Platform API with, for

example, 
omplex I/O and networking fa
ilities omitted. The AWT, Swing and JFC se
tions of the

Java 2 Platform API will also be omitted, allowing us to fo
us on 
onsole-based appli
ations.

Firstly, we are de�ning and implementing an initial LVM in C++, together with a JVM 
lass�le

JIT 
ompiler for produ
ing LVM or target ma
hine 
ode at runtime. We expe
t to either implement

a very simplisti
 garbage 
olle
tor or use one of those freely available[2℄ under the GNU Publi


Li
ense[36℄. We will 
onsider the intera
tion of the LVM with the garbage 
olle
tor during this

work; there may be some advantages to be gained from representing obje
ts using a load/store VM



interpreter-based VMs for their high-speed startup times and small memory footprint, their argu-

ment is based upon their own Smalltalk VM. The relevan
e of their �ndings to Java systems is

un
lear, though assumedly a proxy 
ompilation system bene�ts from the minimal VM while also

reaping the bene�ts of a powerful and 
exible dynami
 
ompilation system.

In the Ahead-of-Time domain, numerous stati
 Java 
ompilation systems exist[30, 9, 25, 24, 31, 11,

5, 38℄ though most are oriented to desktop systems with plentiful resour
es. All systems generate

native binary 
ode either dire
tly or via ANSI C, whi
h is subsequently 
ompiled o�-line. This

approa
h is generally speed eÆ
ient, but often forbids use of dynami
ally loaded 
lasses (e.g. [4℄)

and su�ers the overheads of native 
ode relative to 
ompa
t VM byte
ode.

The COMPOSE group's Harissa[25, 24℄ system notably a
knowledges the requirement for stati
ally-


ompiled Java appli
ations to exe
ute dynami
ally loaded 
lasses, however, its solution - an inter-

preter - results in a slow, if 
ompa
t solution. An equivalent interpreter has re
ently been added to

the GNU g
j 
ompiler[31℄. Neither system addresses eÆ
ient runtime 
ompilation of dynami
ally

loaded Java 
ode in resour
e-
onstrained environments.

Roelofs[32℄ notes the 
hara
teristi
s of resour
e-
onstrained systems, but is 
hie
y 
on
erned with

using 
onne
ted devi
es to allow remote exe
ution of appli
ation 
ode. Our resear
h instead seeks to

use more powerful peers to speed translation of the devi
e's 
ore program for subsequent exe
ution

on the devi
e itself.

Wakeman et al[26, 15℄ have worked on resear
h whi
h similarly a
knowledges the problems of en-

vironments in whi
h resour
es are limited. Their approa
h uses a proxy devi
e to serve suitably


ompressed or s
aled versions of requested data in a

ordan
e with 
lient-spe
i�ed 
onstraints ex-

pressing, for example, degradation limits. This is analogous to the notion of proxy 
ompilation,

though the authors have not spe
i�
ally proposed it. The work also proposes that 
lients inform the

proxy of their resour
es. This is a potentially attra
tive te
hnique whi
h would allow the server to

spe
ialise a 
ode fragment or appli
ation for the spe
i�
 resour
es available to the 
lient. In situa-

tions where low resour
es prohibit exe
ution pro�ling, this may be the only feedba
k the 
lient 
an

provide regarding the runtime environment. An additional, albeit lesser, 
onsideration is that their

implementation uses Java and RMI on the 
lient side. Our work dire
tly addresses the question of

proxy 
ompilation and is designed to s
ale to very simple 
lients where a Java runtime environment

may not be feasible.

The vast majority of dynami
 
ompilation systems require storage of a dynami
 
ompiler system in

the runtime environment, and must exe
ute on the target system. The small number of proje
ts

whi
h do not employ this model are now des
ribed. Voss and Eigenmann[41℄ detail a system whi
h is

notionally similar to proxy 
ompilation, but assumes various system 
hara
teristi
s. These in
lude a

requirement for NFS mounted storage to be shared between systems and a relian
e on RPC fa
ilities.

We believe su
h a solution would not s
ale well to resour
e-
onstrained systems (parti
ularly single

threaded appli
ations whi
h use a minimal operating system or do not require an OS). Additionally,

this proje
t has fo
ussed on ANSI C and FORTRAN appli
ations rather than Java.

Bell Labs' Inferno system[44, 43, 7℄ and Tao Systems' Elate/Intent system[12℄ both use a low-level

VM instru
tion set to in
rease the eÆ
ien
y of Java 
ode. These two systems are now 
ontrasted

with our proposed systems.

Inferno's use of a memory-to-memory virtual ma
hine results in a virtual ma
hine ar
hite
ture whi
h

is super�
ially similar to our proposed LVM system. There are a number of 
riti
al di�eren
es,

however. Firstly, Inferno is target-independent, supporting Intel x86, SPARC, ARM, PowerPC,

MIPS and other devi
es. Although the prin
iple of a low-level virtual ma
hine is appli
able to targets

with a load/store ar
hite
ture, we expe
t to in
rease eÆ
ien
y by 
reating spe
ialised versions of the

LVM instru
tion set for individual pro
essors. Furthermore the Inferno virtual ma
hine (Dis) has an

instru
tion set whi
h has been designed for the Limbo programming language, not Java. Although

there are many similar features, in
luding obje
ts and garbage 
olle
tion, supported by an[(
)1999.e
(devi
es.)Tj
3ext999.d1.321 13Td
[(sa)Tj
7.8 0 Td
(load/store)Tj
47.1(a
)2001.34(1999.92(hite
ture)℄TJ
54.3m[f.)Tj
-61.2 system.r714,



Elate/Insight also uses a low-level, target-independent instru
tion set, however it, like the Kimera

proje
t[35℄, use a form of remote 
ompilation whi
h relies on shared memory and persistent network


onne
tions. Su
h systems fail to a
knowledge the often intermittent nature of network 
onne
tions

to resour
e-
onstrained devi
es. As des
ribed above, our proxy 
ompilation s
heme is designed to

s
ale to a



[4℄ Natural Bridge. Bullet-Train Homepage.

http://www.naturalbridge.
om/bullettrain.html.

[5℄ Department of Computer S
ien
e and Engineering, University of Washington.

Ce
il/Vortex Homepage.

http://www.
s.washington.edu/resear
h/proje
ts/
e
il/www/index.html.

[6℄ Stephan Diehl. A Formal Introdu
tion to the Compilation of Java. Software { Pra
ti
e and

Experien
e, 28(3):297{327, Mar
h 1998.

[7℄ Sean Dorward, Rob Pike, David Leo Presotto, Dennis Rit
hie, Howard Tri
key, and Phil Win-

terbottom. Inferno. In Pro
eedings of the IEEE Comp
on 97 Conferen
e, pages 241{244, San

Jose, 1997.

[8℄ Eri
sson Mobile Communi
ations AB. OÆ
ial Bluetooth website.

http://www.bluetooth.
om, 1999.

[9℄ Robert Fitzgerald, Todd B. Knoblo
k, Erik Ruf, Bjarne Steensgaard, and David Tarditi. Mar-

mot: An Optimizing Compiler for Java. Te
hni
al Report MSR-TR-99-33, Mi
rosoft Resear
h,

June 1999.

[10℄ James Gosling, Bill Joy, Guy Steele, and Gilad Bra
ha. The Java

TM

Language Spe
i�
ation.

Addison-Wesley, 2nd edition, 1999.

[11℄ Sili
omp Group. Turbo-JHomepage.

http://www.ri.sili
omp.fr/adv-dvt/java/turbo/.

[12℄ Tao Group. Elate/Insight Homepage.

http://www.tao.
o.uk.

[13℄ Di
k Grune, Henri E. Bal, Ceriel J.H. Ja
obs, and Koen G. Langendoen. Modern Compiler

Design. John Wiley and Sons, Ltd., 2000.

[14℄ Joseph Hummel, Ana Azevedo, David Kolson, and Alexandru Ni
olau. Annotating the Java

Byte
ode in Support of Optimization. Con
urren
y: Pra
ti
e and Experien
e, 9(11):1003{1016,

November 1997.

[15℄ Ian Wakeman, Andy Ormsby, and Mal
olm M
Ilhagga, S
hool of Cognitive and Computing

S
ien
es, University of Sussex. An Ar
hite
ture for Adaptive Retrieval of Networked Information

Resour
es. IEE Colloquium on



[22℄ Blair M
Glashan and Andy Bower, Obje
t Arts Ltd. The Interpreter is Dead (Slow). Isn't it?

Position Paper for OOPSLA'99 Workshop: Simpli
ity, Performan
e and Portability in Virtual

Ma
hine design.

http://www.squeak.org/oopsla99_vmworkshop/, O
tober 1999.

[23℄ Steven S. Mu
hni
k. Advan
ed Compiler Design and Implementation. Morgan Kaufmann, 1997.

[24℄ G. Muller, B. Moura, F. Bellard, and C. Consel, IRISA / INRIA, University of Rennes. Harissa:

A Flexible and EÆ
ient Java Environment Mixing Byte
ode and Compiled Code. In 3rd Usenix



[41℄ Mi
hael J. Voss and Rudolf Eigenmann. A Framework for Remote Dynami
 Program Optimiza-

tion. In Jong-Deok Choi, editor, Pro
eedings of the ACM SIGPLAN Workshop on Dynami


and Adaptive Compilation and Optimization (Dynamo '00)


