
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Towards a Behavioural Theory of

Access and Mobility Control in

Distributed Systems

M. Hennessy

M. Merro

J. Rathke

Report 01/2002 October 2002

Computer Science
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

Towards a Behavioural Theory of Access and

Mobility Control in Distributed Systems

M. Hennessy, M. Merro and J. Rathke

Abstract. We define a typed bisimulation equivalence for the language Dpi, a dis-
tributed version of the π-calculus in which processes may migrate between dynamically
created locations. It takes into account resource access policies, which can be imple-
mented in Dpi using a novel form of dynamic capability types. The equivalence, based
on typed actions between configurations, is justified by showing that it is fully-abstract
with respect to a natural distributed version of a contextual equivalence.

In the second part of the paper we study the effect of controlling the migration of
processes. This affects the ability to perform observations at specific locations, as the
observer may be denied access. We show how the typed actions can be modified to
take this into account, and generalise the full-abstraction result to this more delicate
scenario.

1 Introduction

The behaviour of processes in a distributed system depends on the re-
sources they have been allocated. Moreover these resources, or a process’s
knowledge of these resources, may vary over time. Therefore an adequate
behavioural theory of distributed systems must be based not only on the
inherent abilities of processes to interact with other processes, but must
also take into account the (dynamic) resource environment in which they
are operating. In our approach judgements will take the form

Γ |= M ≈ N,

where N and M are systems and Γ represents their computing environ-
ment. Intuitively this means that M and N offer the same behaviour,

2 M. Hennessy, M. Merro and J. Rathke

• the computing environment Γ may vary dynamically, reflecting both
the overall resources available to M and N and the evolving knowledge
that users may accumulate of these resources.

This is developed in terms of the language Dpi, [9], a version of the π-
calculus, [14], in which processes may migrate between locations, which in
turn can be dynamically created. As explained in [9] resource access poli-
cies in Dpi may be implemented using a capability based type system; thus

. . . Behavioural Theory of Access and Mobility Control. . .

4 M. Hennessy, M. Merro and J. Rathke

The final topic of the paper is the effect of migration on the behaviour
of systems. In Dpi the migration of processes is unconstrained. The
relevant reduction rule is

kJgoto l.P

. . . Behavioural Theory of Access and Mobility Control. . . 5

details are given in Section 5, where we also demonstrate the power of this
mechanism.

The remainder of the paper is devoted to extending the result (2)
above to this language. The power of contexts, which can use this capa-
bility moveS to control access to sites, turns out to be very complex. To
simplify matters we address the case where the only form of this capability
allowed is move∗, with ∗ being a wild card; thus if the environment has
this capability for a location k then all locations have migration rights to
k.

6 M. Hennessy, M. Merro and J. Rathke

which are only allowed if either the environment has migration rights to
k, as before, or k is in T . A counterexample is given in Section 5.2.

It turns out that we must be careful about the location at which in-
formation is learned. Information about k learned at l can not be used
without the capability to move to k. However this information must be re-
tained because that move capability may subsequently be obtained. This
leads to a more complicated form of environment Γ, which records

• locations at which testing processes may be placed, T

• globally available information on capabilities at locations

• similar locally available information.

The details are given in Section 5.2, which also contains a generalisation
of the typed actions of (1) above to these more complicated environments.

. . . Behavioural Theory of Access and Mobility Control. . . 7

M, N ::= Systems

lJP K Located Process
M | N Composition
(new n : T) M Name Scoping
0 Termination

P, Q ::= Processes

u!〈V 〉 P Output
u?(X : T)P Input
goto v.W Migration
if u = v then P else Q Matching
(newc n : A) P Channel Name creation
(newreg n : G) P Registered Name creation
(newloc k : K) with C in P Location Name creation
P | Q Composition
∗ P Replication
stop Termination

U, V, W ::= Values

(α1, . . . , αn), n > 0 tuples

α, α′ ::= Generalised Identifiers

u Identifiers
(u1, . . . , un)@u, n ≥ 0 Located Identifiers

Figure 1. Syntax of Dpi

construct if u = v then P else Q, a form of recursion, ∗P , and three forms
of name creation:

• (newc a : A) P , the creation of a new local channel of type A called a.

• (newreg n : rc〈A

8 M. Hennessy, M. Merro and J. Rathke

senting the thread P running at location l. These may be combined with
the parallel operator | and names may be shared between threads using
the construct (new e : T) where T is one of A, rc〈〉A or K.

Processes, systems and indeed types may contain occurrences of vari-
ables, and these may be bound in the construct u?(X : T) P ; if x appears
in the pattern X then all occurrences of x in T and P are bound. This
leads to the notions of free and bound variables, capture-avoiding substi-
tution of identifiers for variables, P {|v/x|}, and α-equivalence. These are all
standard apart from substitutions into types, which is not quite syntactic;
the details of substitution into types may be found in Definition 3.3 . We
say that a system or process term is closed if it contains no free occurrences
of variables.

The language also contains binding constructs for names, (newc n : A) P ,
(newreg n : G) P and (newloc k : K) with C in P in processes. So we also
have the notions of free and bound names in terms, and as usual the def-
inition of α-equivalence identifies terms which only differ by their use of
bound names.

Reduction Semantics: This is given in terms of a binary relation be-
tween closed systems:

M → N

and is a mild generalisation of that given in [9] for Dpi. It is a con-

textual uu

10 M. Hennessy, M. Merro and J. Rathke

Base Types: B ::= int | bool | unit | ⊤ | . . .
Local Channel types: A ::= r〈T〉 | w〈T〉 | rw〈T, U〉

provided U <: T
Capability Types: R ::= u : A
Location Types: K ::= loc[R1, . . . , Rn], n ≥ 0
Registered Name Types: G ::= rc〈A〉

Value Types: C ::= B | A | G | (Ã)@u | (Ã)@K
Transmission Types: T ::= (C1, . . . , Cn), n ≥ 0

Figure 4. Types

3 Typing

In this section we outline the types use to control resources and the ac-
companying typing system. The starting point is similar to the typing
system of [9], but there are three major differences:

• We use a new category of types, registered name types, to explicitly
manage the resource names which can be shared between different
locations.

• The types expressions are allowed to contain variables, thereby giv-
ing rise to what we call dynamic types; the constraints they place on
agent behaviour is determined dynamically by instantiation of these
variables.

• The notion of type environment is changed; they do not explicitly
contain associations between names and location types.

3.1 The Types

The collection of types is an extension of those used in [9], to which the

. . . Behavioural Theory of Access and Mobility Control. . . 11

Local Channel types: ranged over by A and may be restricted to read-
only capability r〈

. . . Behavioural Theory of Access and Mobility Control. . . 13

induction by letting

loc[u1 : A1, . . . , un : An]{|v/x|} =

loc[u1{|v/x|} : (A1{|v/x|})] ⊓ . . . ⊓ loc[un{|v/x|} : (An{|v/x|})]

14 M. Hennessy, M. Merro and J. Rathke

return address; it checks if the integer is a prime and returns the answer
at the proffered address:

sJ. . . | ∗quest?(x, y@z) goto z.y!〈isprime(x)〉

∗ ping?(X : Up) . . .

∗ kill?(X : Uk) . . . K

Here the integer is bound to x, while the address consists of two parts, a
channel, bound to y, at some unknown site, bound to z.

A typical client, residing at c, takes the form:

cJ(newc r : rw〈bool〉) goto s.quest!〈v, r@c〉 stop | r?(z) . . .K

Here a new return channel r is generated and a process is sent to the service
s with the integer to be tested v, and the return address r@c. Meanwhile
back at the client the result is awaited on the local channel r.

The type of the service at the port quest, denoted Tp above, takes the
form r〈Uq〉, where Uq is a tuple type. The first component is int while
the second is a type for a remote channel at some unknown location; the
fact that the location (of the client) is unknown, or arbitrary, allows the
service to be used by any client. The type Uq is given by

〈 int, w〈bool〉@loc 〉

since only the capability to write a boolean is required of the remote
channel. ✷

Example 3.5.

. . . Behavioural Theory of Access and Mobility Control. . . 15

receives personalised treatment; the new site will always reply to a channel
at the site me. ✷

Example 3.6. [Shared interfaces] Here we demonstrate the usefulness of
new type category of registered names in setting up shared interfaces
among different sites. Consider a system of the form

(newreg put : rc〈Tp〉, get : rc〈Tg〉) (Bserver | Client1 | Client2 | . . .)

consisting of a bank account server Bserver and a number of clients. The
system is within the scope of two registered names, put and get, registered
at specific types Tp and Tg on which we will not elaborate. This pair
of typed names may serve, informally, as the interface for bank accounts
created by the server for the various clients. An example server would
take the form:

Bserver ⇐ sJ∗request?(x : int, y@z)

(newloc b : Lb) with . . . put, get . . . in

16 M. Hennessy, M. Merro and J. Rathke

counts and the server would merely administer the shared interface:

Server ⇐ (newreg put : rc〈Tp〉, get : rc〈Tg〉)

sJ∗request?(y@z)

goto z.y!〈put, get〉K

Here, on receipt of a request the server simply forwards the two registered
names put and get. A typical client would look like:

Client ⇐ meJ(newc r : Tr) goto s.request!〈r@me〉 |

r?(y, z) (newloc b : Ly,z) with . . . code . . . in . . .K

Here the client, in response to a request, receives two registered names
which are bound to y and z and then a new bank account is set up with
a declaration type

Ly,z = loc[y : Tg, z : Tp]

Note that this again is a dynamic type, which will be instantiated at run-
time. Also the type of the reply channel used by clients, Tr is for registered

names, rather than channels. Here it may be 〈put : rc〈Tp〉, get : rc〈Tg〉〉.
The net effect is that all bank accounts established by clients who use

the server will share the same interface. ✷

3.2 Type environments

A type judgement will take the form Γ ⊢ M where Γ is a type environment,
a list of assumptions about the types to 72031 2.03984 01 Td
5mn84 Tp(e)-267.2 0 Td
(`)Γ

. . . Behavioural Theory of Access and Mobility Control. . . 17

(e-empty)

⊢ env

(e-base)

Γ ⊢ env

Γ, u : base ⊢ env

u 6∈ Γ

(e-new−lchan)

Γ ⊢ env

Γ ⊢ w : loc

Γ, u : A@w ⊢ env

u 6∈ Γ
u 6∈ A

(e-ref−lchan)

Γ ⊢ env

Γ ⊢ w : loc

Γ ⊢ u : rc〈B〉, B <: A

Γ, u : A@w ⊢ env

u@w 6∈ dom(Γ)
u 6∈ A

(e-rchan)

Γ ⊢ env

18 M. Hennessy, M. Merro and J. Rathke

exist at the location w, but it may exist elsewhere; that is Γ may contain
an association u : A′

@w′ for some w′ different than w. But to introduce
such a name, to be shared among various locations, it must already be
declared as a registered name, and it can only be introduced at w with a
subtype of its declared type. This is the import of the premise u : rc〈B〉
and the condition B <: A. So in general local channel names may exist
at different locations but all their local types are consistent, in that they
have the declared type B as a lower bound.

Valid type environments associate types to identifiers but we are some-
what lax about the use of variables in these types. In principle such a type
may contain variables which are not known to the environment. It will
turn out that we will not be able to type systems relative to such environ-
ments.

Definition 3.8 (Environment domains).

. . . Behavioural Theory of Access and Mobility Control. . . 19

for some T1 <: T2 ✷

Proposition 3.11. Let Envs be the set of all valid environments. Then
the preorder 〈Envs, <:〉 has partial meets.

Proof: First note that Envs ordered by <: is indeed a preorder but not
a partial order. For example if Γ1, Γ2 denote the environments

k : loc, l : loc and l : loc, k : loc

respectively, then Γ1 <: Γ2 and Γ2 <: Γ1 but they are different environ-
ments.

Suppose there is a valid environment ∆ such that ∆ <: Γi for i = 1, 2
we show how to construct a valid environment Γ1 ⊓ Γ2. The construction
is by induction on the size of Γ2. If it is empty then the result is obviously
Γ1 itself. Otherwise it is of the form Γ′

2, u : T and we may assume Γ1 ⊓ Γ′
2

exists. Then Γ1 ⊓ Γ2 is constructed by extending Γ1 ⊓ Γ′
2; the precise

extension depends on u and T. If u 6∈ dom(Γ1 ⊓ Γ′
2) then the construction

gives Γ1 ⊓ Γ′
2, u : T. So let us assume that u ∈ dom(Γ1 ⊓ Γ′

2).

• T is loc: The construction gives Γ1 ⊓ Γ′
2 itself.

• T is base: Similar.

• T is rc〈A〉: Here there are two cases:

– If

20 M. Hennessy, M. Merro and J. Rathke

result of removing that entry. Then the construction gives ∆, u :
rc〈A ⊓ A′〉, u : A@w, u : A@w′.

We leave the reader to check that this construction is correct; that is

• Γ1 ⊓ Γ2 ⊢ env

• Γ1 ⊓ Γ2 <: Γi for i = 1, 2

• If ∆ <: Γi for i = 1, 2 then ∆ <: Γ1 ⊓ Γ2. ✷

. . . Behavioural Theory of Access and Mobility Control. . . 21

(t-rnew)

Γ, n : rc〈A〉 ⊢ M

Γ ⊢ (new n : rc〈A〉) M

(t-cnew)

Γ, n : A@k ⊢ M

Γ ⊢ (new n : A@k) M

(t-lnew)

Γ ⊓ 〈k : K〉 ⊢ M
Γ ⊓ 〈k : K〉 ⊢dec k : K

Γ ⊢ (new k : K) M
(t-par)

Γ ⊢ M
Γ ⊢ N

Γ ⊢ M | N

(t-thread)

Γ ⊢k P : proc

Γ ⊢ k : loc

Γ ⊢ kJP K

Figure 8. Typing Systems

The main inference rule is (t-thread). In order to ensure that kJP K is
a well-typed system we must show that the thread is well-typed to run at
k. The typing of threads must be relative to a location because it may use
local channels; these channels must exist at k. There is also a subtlety in
the typing of name creation. First note that in these, and all subsequent
rules, we assume that all bound names in a conclusion do not appear free
in any assumptions. Thus in (t-lnew) when constructing Γ ⊓ 〈k : K〉
we know that k is actually new to Γ; so effectively the type associations
in 〈k : K〉 are simply appended to those in Γ. There is also an implicit
assumption that 〈k : K〉 is actually a well-formed environment. However
note that we have to check that K is a proper declaration type; that is
we need to ensure that it only contains registered resource names. This is
achieved by an additional judgement on values,

Γ ⊓ 〈k : K〉 ⊢dec k : K

See the rule (t-dec − loc) in Figure 7; this ensures that all channel names
installed at new locations have already been registered.

Finally the typing rules for the judgements on threads

Γ ⊢w P : proc

are given in Figure 9, many of which should be familiar from typing sys-
tems for the π-calculus. For example (t-in) says that to ensure the process
u?(X : T) P is well-typed relative to Γ to run at location w we must ensure
that

• u is a channel with read capability of the appropriate type at w, that
is Γ ⊢ u : r〈T〉@w

• the residual is well-typed in the environment Γ augmented by assuming
the variables in the pattern X have the types assigned to them by the

22 M. Hennessy, M. Merro and J. Rathke

(t-output)

Γ ⊢w P : proc

Γ ⊢ V : T@w
Γ ⊢ u : w〈T〉@w

Γ ⊢w u!〈V 〉 P : proc

(t-in)

Γ ⊓ 〈X : T〉@w ⊢w P : proc

Γ ⊢ u : r〈T〉@w

Γ ⊢w u?(X : T) P : proc

(t-go)

Γ ⊢ u : loc

Γ ⊢u P : proc

Γ ⊢w goto u.P : proc

(t-stop)

Γ ⊢ env

Γ ⊢w stop : proc

(t-l−new)

Γ ⊓ 〈k : K〉 ⊢w P : proc

Γ ⊓ 〈k : K〉 ⊢k C : proc

Γ ⊓ 〈k : K〉 ⊢dec k : K

Γ ⊢w (newloc k : K) with C in P : proc

(t-c−new)

Γ, n : A@w ⊢w P : proc

Γ ⊢w (newc n : A) P : proc

(t-r−new)

Γ, n : G ⊢w P : proc

Γ ⊢w (newreg n : G) P : proc

(t-match)

Γ ⊢ u : T, v : U
Γ ⊢w Q : proc

Γ ⊓ 〈u : U〉@w ⊓ 〈v : T〉@w ⊢w P : proc

Γ ⊢w if u = v then P else Q : proc

(t-rep)

Γ ⊢w P : proc

Γ ⊢w ∗ P : proc

(t-par)

Γ ⊢w P : proc

Γ ⊢w Q : proc

Γ ⊢w P | Q : proc

Figure 9. Typing Threads

incoming type T, that is Γ ⊓ 〈X : T〉@w ⊢w P : proc.

The rules (t-output),(t-stop), (t-par) and (t-rep) are informed in the
same manner from similar rules for the π-calculus. The rule (t-go) is
a natural one for typing the process goto u.P and note that the require-
ments are actually independent of the current location w. The three rules
governing the generation of new names at the three kinds of types A, K
and G should be self-explanatory. Finally the rule (t-match) is moti-
vated at length in [9] where it is argued to be essential in capability based
type systems. Briefly when establishing that if u = v then P else Q is
well-typed with respect to Γ we need to ensure that both P and Q are
well-typed. However in the case of P we can take advantage of the fact
that the identifiers u and v are in fact the same. Consequently any typing

. . . Behavioural Theory of Access and Mobility Control. . . 23

information associated with them can be amalgamated. So we need only
establish that P is well-typed with respect to the augmented environment
Γ ⊓ 〈u : U〉@w ⊓ 〈v : T〉@w; here the type of u is augmented by that of v,
namely U, while that of v is augmented with T, the type of u. In capabil-
ity based typing systems this is important as it enables us to periodically
accumulate capabilities associated with particular identifiers.

3.4 Properties of the typing system

We are mainly interested in establishing Subjection reduction but this
requires a series of preliminary results which we first outline. We often
abbreviate abbreviate the judgement Γ ⊢w P : proc to Γ ⊢w P . First two
standard properties one would expect:

Proposition 3.12.

• (Weakening) Suppose Γ, Γ′ are two well-defined environments such
that Γ′ <: Γ. Then Γ ⊢ M implies Γ′ ⊢ M .

• (Strengthening) Suppose If Γ, u : T ⊢ M and u does not occur in the
free identifiers of M . Then Γ ⊢ M .

Proof: Standard. Note however that corresponding results must be first
established for the typing systems for values and processes. ✷

One standard property which does not hold is Interchange:

Γ1, u1 : T1, u2 : T2, ⊢ M implies Γ1, u2 : T2, u1 : T1, ⊢ M

because one can not arbitrarily switch41 5.15i944-485.156(Note)-342.914.3462 Tf
6.3 Tf
ot Note4 T

24 M. Hennessy, M. Merro and J. Rathke

and similarly for processes and values. Thus we can rearrange valid en-
vironments using the identities (6), (7) above without changing their use
in the inference of typing judgements. These judgements will be used in
place of Interchange.

The main difficulty in establishing the Subject Reduction resides in
showing the the reduction rule (r-comm) preserves well-typing. This
amounts to showing that Γ ⊢k c!〈V 〉 Q | c?(X) R implies Γ ⊢k Q | R{|V/X|}
and proving

Γ ⊢k R{|V/X|} (8)

is the non-trivial part. After some analysis of the premise we will have

Γ ⊓ 〈X : T〉@k ⊢k R and Γ ⊢ V : T@w (9)

and the Substitution result should be sufficient to infer (8) from (9).
However here the notation for the constructed environment 〈X : T〉@k

hides considerable complexity; the type T may be any of the allowed
transmission types, for local or non-local channels, for locations, or for
structured values. Accordingly to make the proofs more transparent we
will isolate the particular cases, and treat some of them individually.

Proposition 3.13 (Local channel substitutions). Suppose Γ ⊢ v :
A@w and Γ ⊢ w1 : loc. Then, if x does not appear in Γ

Values: Γ, x : A@w ⊢ U : T@w1 implies Γ ⊢ U{|v/x|} : T@w1

Processes: Γ, x : A@w ⊢w1
R implies Γ ⊢w1

: R{|v/x|}

Proof: Throughout the proof we let α′ denote α{|v/x|} for any appropriate
syntactic object α.

The result for values is easily established by induction on the inference
of the judgement Γ, x : A@w ⊢ U : T@w1. The base case is when the
axiom (t-name) is used, where the argument depends on whether U is
the variable x or not. All other cases follow straightforwardly by induction.
Note that because of the restrictions on the formation rules for well-typed
environments we know that x can not appear in the type A.

Similarly the result for processes is proved by induction on the inference
of Γ, x : A@w ⊢w1

R and an analysis of the last rule used. We examine
two typical cases.

• Suppose Γ, x : A@w ⊢w1
u?(X : T) R because

(i) Γ, x : A@w ⊢ u : r〈T〉@w1 and

(ii) (Γ, x : A@w) ⊓ 〈X : T〉@w ⊢w1
R

Applying the first result to (i) we obtain

. . . Behavioural Theory of Access and Mobility Control. . . 25

(i’) Γ ⊢ u′ : r〈T〉@w1.

In (ii), because Γ ⊢ w : loc, the environment may be written as (Γ⊓〈x :
A〉@w)⊓ 〈X : T〉@w which is equivalent to (Γ⊓ 〈X : T〉@w)⊓ 〈x : A〉@w.
Thus (ii) may be rewritten as

(ii’) (Γ ⊓ 〈X : T〉@w) ⊓ 〈x : A〉@w ⊢w1
R

Here we can apply induction to obtain

(ii”) (Γ ⊓ 〈X : T〉@w) ⊢w1
R′

Now the input rule (t-in) can be applied to (i’) and (ii”) to obtain the
required Γ ⊢w1

u′?(X : T) R′. Note that our conventions about bound
variables ensures that u′?(X : T) R′ is the same as (u?(X : T) R)′.

• Suppose Γ, x : A@w ⊢w1
if u1 = u2 then P else Q because

(i) Γ, x : A@w ⊢ u1 : T, u2 : U

(ii) Γ, x : A@w ⊢w1
Q and

(iii) (Γ, x : A@w) ⊓ 〈u1 : U〉@w1 ⊓ 〈u2 : T〉@w1 ⊢w1
P

Applying the first result to (i) and induction to (ii) we obtain

(i’) Γ ⊢ u′
1 : T, u′

2 : U

(ii’) Γ ⊢w1
Q′

The environment in (iii) can be rewritten to the equivalent form

Γ ⊓ 〈u1 : U〉@w1 ⊓ 〈u2 : T〉@w1 ⊓ 〈x : A〉@w (10)

The argument now depends on whether u1 or u2 (or both) coincide
with x. As an example consider the case when u1 is x and u2 is
different. Here w must be the same as w1 and U must be a local
channel type A′

@w such that A⊓A′ exists. Then the environment (10)
can be rewritten as

Γ ⊓ 〈u2 : T〉@w ⊓ 〈x : A ⊓ A′〉@w

Also because Γ ⊢ v : A@w we know Γ ⊓ 〈v : A′〉@w is well-defined and
therefore by Weakening we have

Γ ⊓ 〈v : A′〉@w ⊓ 〈u2 : T〉@w ⊓ 〈x : A ⊓ A′〉@w ⊢w1
P (11)

But Γ ⊓ 〈v : A′〉@w ⊢ v : (A ⊓ A′)@w and so we my apply induction to
(11) to obtain

(iii’) Γ ⊓ 〈v : A′〉@w ⊓ 〈u2 : T〉@w ⊢w1
P ′

Now (t-match) can be applied to (i’),(ii’) and (iii’) to obtain Γ ⊢w1

if u′
1 = u′

2 then P ′ else Q′.

26 M. Hennessy, M. Merro and J. Rathke

✷

Unfortunately the substitution of locations requires a more compli-

. . . Behavioural Theory of Access and Mobility Control. . . 27

Processes: Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊢w R implies Γ1 ⊓ Γ2[v/x] ⊢w{|v/x|} R{|v/x|}

Proof: Note that the previous Lemma ensures that Γ2[v/x] is a well-
defined environment. The first result is proved by induction on Γ while
the second is by induction on the inference of the judgement Γ1 ⊓ 〈x :
K〉 ⊓ Γ2 ⊢ U : T@w; we leave the details to the reader.

The result for processes is by induction on the inference of Γ1⊓〈x : K〉⊓
Γ2 ⊢w R and an analysis of the last rule used. We give one representative
example.

Suppose Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊢w (newloc l : L) with C in P because

(i) (Γ1 ⊓ 〈x : K〉 ⊓ Γ2) ⊓ 〈l : L〉 ⊢l C

(ii) (Γ1 ⊓ 〈x : K〉 ⊓ Γ2) ⊓ 〈l : L〉 ⊢w P

(iii) Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊓ 〈l : L〉 ⊢dec l : L

Using the associativity of ⊓ we can rearrange (i) to the form

Γ1 ⊓ 〈x : K〉 ⊓ (Γ2 ⊓ 〈l : L〉) ⊢l C

to which induction can be applied to give

Γ1

28 M. Hennessy, M. Merro and J. Rathke

as required. ✷

The substitution of registered names needs a formulation similar to
that of locations. For example consider an attempt to prove

Γ, x : rc〈A〉 ⊢w (newloc k : loc[x : B]) with C in P (13)

This will be reduced to an attempt to prove

Γ, x : rc〈A〉, k : loc, x : B@k ⊢w P

which is not of the form (13).

Proposition 3.17 (Registered name substitutions). Suppose Γ1 ⊢
v : rc〈A〉 and x does not appear in Γ1. Then

Environments: Γ1 ⊓ 〈x : rc〈A〉〉 ⊓ Γ2 ⊢ env implies Γ1 ⊓ Γ2[v/x] ⊢ env

Values: Γ1 ⊓ 〈x : rc〈A〉〉 ⊓ Γ2 ⊢ U : T@w implies Γ1 ⊓ Γ2[v/x] ⊢ U{|v/x|} :
(T@w){|v/xinP ��

@

. . . Behavioural Theory of Access and Mobility Control. . . 29

(i) Γ ⊢k Q and

(ii) Γ ⊢k P {|V/X|}

The first is easily seen to follow from the hypothesis while the second
will follow from Theorem 3.18 if we can establish

(a) Γ ⊢ V : T@k and

(b) Γ ⊓ 〈X : T〉@w ⊢k P

The hypothesis implies implies Γ ⊢k c?(X : T) P which means (b) is
satisfied but also that Γ ⊢k c : r〈T〉@k. On the other hand the hypoth-
esis also implies that Γ ⊢k c!〈V 〉 Q which means that Γ ⊢ V : U@k for
some type U such that Γ ⊢ c : w〈U〉@k. However Proposition 3.9 (iii)
implies that U <: T and part (iv) of the same proposition gives (a)
and we are finished.

(r-c − create): Suppose Γ ⊢ kJ(newc n : A) P K. To establish the judge-
ment Γ ⊢ (new n : A@k) kJP K it is sufficient, by (t-c − new), to prove

Γ, n : A@k ⊢k P (14)

But the only way to establish the hypothesis is by the rule (t-cnew)
in Figure 8, for which we need Γ, n : A@k ⊢ kJP K, which can only be
established from (t-thread), for which (14) is necessary. ✷

30 M. Hennessy, M. Merro and J. Rathke

scenarios in which clients are given selective knowledge of dynamically
created resources.

Example 4.1. Let K be the type loc[a : A, b : B] Consider the system
M

. . . Behavioural Theory of Access and Mobility Control. . . 31

Context closure: We say that a knowledge-indexed relation over sys-
tems is contextual if

(i) Γ |= M R N and Γ, Γ′ ⊢ env implies Γ, Γ′ |= M R N

(ii) Γ |= M R N and Γ ⊢ O implies Γ |= (M | O) R (N | O)

(iii) Γ ⊓ 〈n : T〉 |= M R N implies Γ |= (new n : T) M R (new n : T) N

Note that in this last clause we have used an abbreviation to cover the
three different forms of names which can be declared, local channels, reg-
istered names and locations, each differentiated by the form which T can
take. Moreover we assume that n is new to Γ. The first clause also con-
tains a subtlety; this implies that the equivalence should be preserved even
if the user invents some new names. It would be unreasonable to rewrite
this as

(i’) Γ |= M R N and Γ′ <: Γ, where Γ′ ⊢ env, implies Γ′ |= M R N

This would allow the user to invent new capabilities on resources it has
received from the systems under investigation.

Barb preservation: For any given location k and any given channel
a such that Γ ⊢ k : loc and Γ ⊢ a : rw〈〉@k we write Γ ⊢ M ⇓barb a@k if
there exists some M ′ such that M →∗ (M ′ | kJa!〈〉 P K). We say that a
knowledge-indexed relation over systems is barb preserving if

Γ |= M R N and Γ ⊢ M ⇓barb a@k implies Γ ⊢ N ⇓barb a@k

These three properties determine our touchstone equivalence:

Definition 4.3 (Reduction barbed congruence). We let ∼=
rbc be

the largest knowledge-indexed relation over systems which is

• pointwise symmetric, that is Γ |= M ∼=
rbc N implies Γ |= N ∼=

rbc M

• contextual

• reduction closed

• barb preserving ✷

We will now characterise ∼=
rbc using a labelled transition system and

bisimulation equivalence, thereby justifying our particular notion of bisim-
ulations. Note that knowledge-indexed relations generalise the more usual

32 M. Hennessy, M. Merro and J. Rathke

4.1 A labelled transition characterisation of contextual equivalence

The labelled transition system we present in this section is informed by
recent work by two of the

34 M. Hennessy, M. Merro and J. Rathke

which a appears in Γ; we have used this version only to maintain symme-
try with the output case. Note also that apriori there is no relationship
required between the type at which the value is sent, U, and the type at
which it will be used, T. But it turns out that in the context in which
these rules will be applied (see Definition 4.2 below) the latter will be a
supertype of the former.

The remaining rules are familiar from standard treatments of the pi-
calculus with the possible exception of (lts-weak) which states that for
any input transition the environment may invent fresh names in order to
type the incoming value.

We demonstrate that the transition rules are in fact well-defined, in
the sense that they form a binary relation between simple configurations.

Proposition 4.4. Suppose Γ ✄ M is a simple configuration. If Γ ✄

M µ−→ ΓΓ

. . . Behavioural Theory of Access and Mobility Control. . . 35

fourth part of the same Proposition, together with (iii) above, then gives
Γ ⊢ V : T@k. This, and the above (ii’) are the required hypotheses in the
Substitution Theorem, Theorem 3.18, to obtain the required (16). ✷

The net effect of this proposition is that in typed actions Γ✄M µ−→Γ′
✄N

the resulting environment Γ′ is completely determined by Γ and µ.
It is very easy to view these typed actions as simple restrictions on a

natural operational semantics for Dpi. Let us write

M µ−→ N

if ∆ ✄ M µ−→ ∆′
✄ N for some ∆, ∆′ using a variation on the rules from

Figure 10 in which the typing constraints on ∆ are not enforced (note
that side-conditions to maintain freshness of new names are still in place).
Then we will have the typed action

Γ ✄ M µ−→ Γ′
✄ N

if and only if

• M can in principle perform the action µ, that is M µ−→ N

• and the environment Γ allows the action.

We make the latter statement more precise in the next proposition.

Proposition 4.5. Suppose Γ ✄ M is a simple configuration.

• (Γ ✄ M) τ−→ (Γ′
✄ N) if and only if M → N and Γ′ is Γ

• (Γ ✄ M) (ñ)k.a!V−−−−−→ (Γ′
✄ N) if and only if M (ñ)k.a!V−−−−−→ N and

– Γ ⊢ k : loc

– a : r〈T〉@k occurs in Γ, for some type T

• (Γ ✄ M) (ñ:T̃)k.a?V−−−−−−−→ (Γ′
✄ N) if and only if M k.a?V−−−→ N and

– Γ ⊢ k : loc

– Γ ⊢ a : w〈T〉@k, for some type T

h;h V @k

36 M. Hennessy, M. Merro and J. Rathke

Here we are using the standard notation from [13]; µ=⇒ means τ−→∗ ◦ µ−→ ◦
τ−→∗ while µ̂=⇒ is τ−→∗ if µ is τ and µ=⇒ otherwise; this allows a single

internal move to be matched by zero or move internal moves.
We write Γ |= M ≈bis N if (Γ ✄ M) R (Γ ✄ N) for some bisimulation

R, and say that M and N are bisimilar in the environment Γ. ✷

Note that the relation ≈bis forms a knowledge-indexed relation over sys-
tems by considering Γ as a parameter to the relation. Moreover it satisfies
all of the properties in Definition 4.3. As an example we will prove that
≈bis is contextual. The following three lemmas will be helpful in estab-
lishing this.

Lemma 4.7. If Γ |= M ≈bis N and Γ <: Γ′, where dom(Γ) = dom(Γ′),
then Γ′ |= M ≈bis N .

Proof: Straightforward co-induction. ✷

The next lemma ensures that when new values are extruded to the en-
vironment the types at which they become known are supertypes of the
type at which they were declared by the system.

Lemma 4.8. If Γ ✄ M (ñ)k.c!V−−−−−→ Γ′
✄ M ′ then M ≡ (new ñ : T̃) M ′′ such

that if Γ′ ⊢ ñ : Ũ then T̃ <: Ũ.

Proof:

. . . Behavioural Theory of Access and Mobility Control. . . 37

moreover these components can be recomposed to form again the joint
action. The results depend on the fact that the system is part of a simple
configuration.

Lemma 4.9 (Composition/Decomposition).

(i) (a) If Γ ✄ M (ñ)k.c!V=====⇒ Γ′
✄ M ′ and O k.c?V−−−→ O′ then Γ ✄ M | O τ=⇒

Γ ✄ (new ñ : T̃) M ′ | O′ for some T̃

(b) If Γ ✄ M (ñ:T̃)k.c?V=======⇒ Γ′
✄ M ′ and O (ñ)k.c!V−−−−−→ O′ then Γ ✄ M | O τ=⇒

Γ ✄ (new ñ : T̃) M ′ | O′

(ii) If Γ ✄ M | O τ−→ Γ ✄ M ′ and Γ ⊢ O then one of the following hold

(a) Γ ✄ M τ−→ Γ ✄ M ′′ such that M ′ ≡ M ′′ | O

(b) O −→ O′ such that M ′ ≡ M | O′

(c) Γ ✄ M (ñ)k.c!V−−−−−→ Γ′
✄ M ′′ and O k.c?V−−−→ O′ such that

M ′ ≡ (new ñ : T̃) M ′′ | O′ for some T̃

(d) Γ ✄ M (ñ:T̃)k.c?V−−−−−−−→ Γ′
✄ M ′′ and O (ñ)k.c!V−−−−−→ O′ such that

M ′ ≡ (new ñ : T̃) M ′′ | O′

Proof: Part (i) is relatively straightforward. We only show the first case
as the other is similar. We can proceed by induction on the number of
τ actions in the derivation from the system. For the inductive case this
follows easily by the inductive hypothesis and the fact that | and (new)
are evaluation contexts. We consider the base case in which Γ✄M (ñ)k.c!V−−−−−→
Γ′

✄ M ′.
By Proposition 4.5 we see that M (ñ)k.c!V−−−−−→ M ′. By inspecting the

transition rules we note that the following structural forms must hold

• M ≡ (new ñ : T̃) (new m̃′ : T̃′) (kJc!〈V 〉 P K | M ′′)

• M ′ ≡ (new m̃′ : T̃′) (kJP K | M ′′)

• O ≡ (new ñ′ : Ũ′) (kJc?(X : U) Qn 00 M ′ � (new ˜ M: M′) (k

38 M. Hennessy, M. Merro and J. Rathke

• A is a subterm of M . In which case O does not contribute to the
transition and (a) holds.

• A is a subterm of O. In which case M does not contribute to the
transition and (b) holds.

• A is not a subterm of M or O. In which case, by inspecting the rules,
we see that the only possibility is that A must be an instance of rule
(r-comm). Let us suppose that A is of the form

kJc!〈V 〉 P K | kJc?(X : U) QK → kJP K | kJQ{|V/X|}K

There are two ways in which this could occur: either M provides the
output action, say (ñ)k.c!V−−−−−→, and N the corresponding input (in which
case (c) will hold), or vice-versa (and (d) will hold). We concentrate
on the former as the latter can be dealt with in a similar way. We
know that it must be the case that (up to structural equivalence)

M ≡ (new ñ : T̃) (new m̃′ : T̃′) (kJc!〈V 〉 P K | M ′′′)

O ≡ (new m̃ : Ũ) (kJc?(X : U) QK | O′′)

such that k and c are not in ñ, m̃′, m̃. Let M ′′ be the term

(new m̃′ : T̃′) (kJP K | M ′′′)

and O′ be

(new m̃ : Ũ) (kJQ{|V/X|}K | O′′).

It is clear that M ′ ≡ (new ñ : T̃) (M ′′ |O′) so it suffices to demonstrate
that O k.c?V−−−→ O′ and Γ ✄ M (ñ)k.c!V−−−−−→ Γ′

✄ M ′′ for some Γ′ such that
T̃ <: Γ′(ñ). The former is immediate from the transition rules for in-

40 M. Hennessy, M. Merro and J. Rathke

We know that dom(Γ′
0) is disjoint from dom(Γ−) and that Γ−

✄ M is a
simple configuration, so it must be the case that Γ− ⊢ k : loc and Γ−

contains c : r〈T〉@k also. By Proposition 4.5 again, we see that Γ−
✄

M µ−→ Γ− ⊓ 〈V : T〉@k ✄ M ′. By definition of R we know that there must
exist some

Γ−
✄ N µ=⇒ Γ− ⊓ 〈V : T〉@k ✄ N ′

such that

Γ− ⊓ 〈V : T〉@k |= M ′ ≈bis N ′.

This, and Proposition 4.5, tells us that Γ+
✄ N µ=⇒ Γ+

1 ✄ N ′ with (Γ+
1 ✄

M ′) R (Γ+
1 ✄ N ′) as required.

The case in which µ is an input transition can be treated similarly, but
using the third rule in the grammar for extending environments. ✷

Proposition 4.11.

Γ ⊓ 〈n : T〉 |= M ≈bis N implies Γ |= (new n : T) M ≈bis (new n : T) N.

Proof: In fact, due to Lemma 4.7, it suffices to show

Γ ⊓ 〈n : ⊤〉 |= M ≈bis N implies Γ |= (new n : T) M ≈bis (new n : T) N.

We proceed by defining a relation R which contains ≈bis and relates (Γ ✄

(new n : T) M) and (Γ ✄ (new n : T) N) whenever Γ, n : ⊤ |= M ≈bis N .
We show that R forms a bisimulation.

Take any two configurations related by R: if these are bisimilar then we
can be sure that R satisfies the necessary closure properties. Thus we can
assume that we have chosen configurations of the form Γ✄Γ ✄new

. . . Behavioural Theory of Access and Mobility Control. . . 41

Proof: We do this by defining a relation R such that

(Γ ✄ (new ñ0 : Ũ1) M | O) R (Γ ✄ (new ñ0 : Ũ2) N | O)

if and only if there exists some Γ′, T̃ such that all of the following hold

• Γ′ <: Γ

• Ũ1 <: T̃

• Ũ2 <: T̃

• Γ′ ⊓ 〈ñ0 : T̃〉 |= M ≈bis N

• Γ′ ⊓ 〈ñ0 : T̃〉 ⊢ O.

We must show that R forms a bisimulation. For the purposes of exposition
we will assume that ñ0 is empty. The more general case follows in a similar
manner.

Take (Γ ✄ M | O) R (Γ ✄ N | O) witnessed by Γ′ |= M ≈bis N and
Γ′ ⊢ O and suppose that Γ ✄ M | O µ−→ Γ0 ✄ M ′. If µ is not a τ action
then it clearly derives entirely from M or O. In either case, a matching
µ transition can be found from N because Γ′ |= M ≈bis N and Γ′ <: Γ.
Suppose then that µ is a τ action (so that Γ0 is Γ). We use Lemma 4.9,
Part (ii), to observe that one of four cases hold.

(a) Γ′
✄ M τ−→ Γ′

✄ M ′′. Again, matching transitions are easily found
because Γ′ |= M ≈bis N .

(b) O τ−→O′. But then Γ✄N |O τ−→Γ✄N |O′ and, by Subject Reduction,
Theorem 3.19, we know that Γ′ ⊢ O′ also so (Γ✄M |O′) R (Γ✄N |O′)
as required.

(c) Γ′
✄M (ñ)k.c!V−−−−−→Γ′′

✄M ′′ and O k.c?V−−−→O′ such that M ′ ≡ (new ñ : Ũ1) (M ′′|
O′) for some Ũ1. We note that there must exist some Γ′

✄ N (ñ)k.c!V=====⇒
Γ′′

✄ N ′ such that Γ′′ |= M ′′ ≈bis N ′ and moreover, by Lemma 4.9,
Part (i), we see that Γ✄N |O τ=⇒ Γ✄(new ñ : Ũ2) N ′ |O′ for some Ũ2.
But we know that Γ′′ is Γ′ ⊓ 〈V : T〉@k and that ñ are all contained
in V , so Γ′′ is necessarily of the form Γ′

0 ⊓ 〈ñ : T̃〉 for some Γ′
0 <: Γ′

(transitively, Γ′
0 <: Γ). We know by Lemma 4.8 that Ũ1 <: T̃ and

Ũ2 <: T̃. In particular, we have

Γ′
0

42 M. Hennessy, M. Merro and J. Rathke

and

O′ ≡ (new m̃ : Ũ) (kJQ{|V/X|}K | O′′)

with k, c not in m̃. By inspecting the typing rules we see that

Γ′ ⊢ c : r〈U〉@k

and

Γ′ ⊓ 〈V : T〉@k ⊓ 〈m̃ : Ũ〉 ⊓ 〈X : U〉@k ⊢k Q.

The former tells us that T <: U because we know Γ contains c : r〈T〉@k,
and the latter, along with the fact that

Γ′ ⊓ 〈V : T〉@k ⊓ 〈m̃ : Ũ〉 ⊢ V : T@k

and Theorem 3.18, tells us that Γ′ ⊓ 〈V : T〉@k = Γ′
0 ⊓ 〈ñ : T̃〉 ⊢ O′ so

we can conclude

(Γ ✄ (new ñ : Ũ1) M ′ | O′) R (Γ ✄ (new ñ : Ũ2) N ′ | O′)

as required.

(d) Γ ✄ M (ñ:T̃)

. . . Behavioural Theory of Access and Mobility Control. . . 43

if and only if C[M]α,Γ ⇒ D[N], where D[−] is a canonical context from
which both N and Γ′ are in some sense recoverable.

The formal proof can be recovered as an instance of the more compli-
cated Theorem 5.21 and is therefore omitted. ✷

5 Controlling mobility

We now consider a richer calculus in which movement of processes may be
controlled. As explained in the Introduction, in Dpi any process which is
in possession of the name of a location may travel to that place and begin
executing arbitrary code there. We extend Dpi with a very simple means
of mobility control and investigate the resulting contextual equivalence.

5.1 Migration rights

Hennessy and Riely have already proposed a simple access control mech-
anism for Dpi in the form of the move capability [9], and here we extend
this idea to allow somewhat more flexibility.

The location types in Dpi are of the form

loc[u1 : A1, . . . , un : An]

where the ui : Ai can be seen as capabilities at that location. We introduce
an extra type of capability now by allowing location types to be also of
the form

loc[moveS, a1 : A1, . . . , an : An] (17)

where S is a set of identifiers. If a location k is known at this type then

. . . Behavioural Theory of Access and Mobility Control. . . 45

The details are straightforward:

• We redefine the capabilities in Figure 4 to read

Capabilities: R ::= u : A | moveu

• Type environments can now also include entries of the form u : movew.
We add rules to the type judgements for environments and values ac-
cordingly; see Figure 11.

• Finally, we change the type inference of the migration primitive by
replacing the rule (t-go) from Figure 9 with

(t-move−go)

Γ ⊢ u : loc[movew]
Γ ⊢u P : proc

Γ ⊢w goto u.P

We make no change to the reduction semantics, nor the definition of
contextual equivalence for the language. It is straightforward to check that
Theorem 3.19, Subject Reduction also holds for this extended calculus.

46 M. Hennessy, M. Merro and J. Rathke

it will enable us to demonstrate the subtlety involved in developing be-
havioural equivalences in the presence of controlled mobility. We consider
the sublanguage in which only the universal move capability move∗ where
∗ is a wildcard, is allowed; this capability grants migration rights to every

site. Thus in an environment containing

l : loc[move∗, u1 : A1, . . .]

k : loc[u1 : A1, . . .]

all sites have access to l while no sites have access to k.
For this restricted language we give, in the following two subsections,

two different generalisations to the full-abstraction result, Theorem 4.14.

. . . Behavioural Theory of Access and Mobility Control. . . 47

kJstopK respectively, and suppose Γ is such that Γ 6⊢ k : loc[move∗]. Then
Γ |= N1 ≈m

bis N2 because no m-typed actions are possible from these sys-
tems. ✷

Example 5.4. Here let N3, N4 represent the systems

(new k : loc[move∗, b : rw〈〉]) lJa!〈k〉K | kJb!〈〉K and

(new k : loc[move∗, b : rw〈〉]) lJa!〈k〉K | kJ0K

respectively, and let Γ1 denote the environment

l : loc, l : move∗, b : rc〈rw〈〉〉, a : rw〈loc[

. . . Behavioural Theory of Access and Mobility Control. . . 49

Note that here we still only allow barbs at locations to which we have
migration rights. This could be generalised to also allow barbs at locations
in T . But it would not change the equivalence as these local barbs can
always be replaced by barbs at predefined locations which the environment
declares with migration rights.

The question now is whether we can devise a bisimulation based char-
acterisation of ∼=

T
rbc.

The obvious approach is to modify the definitions of the typed actions
µ−→m, to obtain actions µ−→T which allow observations at a site k, if either

the environment has migration rights to k as before, or k ∈ T . With
these actions we can modify Definition 4.6 to obtain a new behavioural
equivalence, which we denote by ≈T

bis
. Unfortunately this does not coincide

with the contextual equivalence ∼=
T
rbc.

Example 5.9. Let N5, N6 be the systems defined by

hJa!〈b@k〉K | kJb!〈〉K and hJa!〈b@k〉K | kJstopK

and Γ the environment

h : loc, h : move∗, k : loc, a : rw〈T〉@h

Then if k is in T one can check that N5 6≈T

bis
N6. This is because Γ✄N5 can

perform the action h.a!(b@k) followed by k.b!〈〉, which can not be matched
by Γ ✄ N6.

However Γ |= N5 ∼=
T
rbc

N6 because it is not possible to find a context
to distinguish between them. A context can be found to augment the
knowledge of the environment at h with the fact that b exists at k. But it
is not possible to transfer this information from h to where it can be put
to use, namely k. ✷

This example demonstrates that even with our very restricted move
capability there are problems with the flow of information. Knowledge
about the system learnt at l can not necessarily be passed to k if the

50

. . . Behavioural Theory of Access and Mobility Control. . . 51

– T = {k1, . . . , kn}

– Γ <: Γki for each 1 ≤ i ≤ n

We sometimes use Γk0
to denote the first component of the structure

Γ.

• A configuration Γ ✄ M (over T) consists of an environment structure
Γ and a system M such that there exists some environment ∆ with

– ∆ ⊢ M

– ∆ <: Γ

– dom(∆) = dom(Γ) ✷

We will write Γ
T

∇
to mean the family of environments Γ, Γk1

, . . . , Γkn
such

that each component Γki
is equal to the environment Γ; we will typically

omit the parameter T here as it can usually be recovered from context.

We understand Γ, Γ
′

and

52 M. Hennessy, M. Merro and J. Rathke

Proposition 5.11.

• If Γ ✄ M is a configuration and (Γ ✄ M) α−→ (Γ
′
✄ M ′) then Γ

′
✄ M ′

is also a configuration.

• For every Γ and every action α there exists a unique structure (Γafterα)

with the property that (Γ ✄ M) α−→ (Γ
′
✄ M ′) implies Γ

′
is (Γ after α).

Proof: Similar to that of Proposition 4.4. ✷

The evolution from Γ to (Γ after α) involves two distinct kinds of increase

. . . Behavioural Theory of Access and Mobility Control. . . 53

Proof: Straightforward unravelling of the definitions. ✷

So now we can concentrate on relating the relation

54 M. Hennessy, M. Merro and J. Rathke

For notational convenience below we use Γ
′
as an abbreviation for (Γ after

α).

• If α is (m̃)k.a!v and Γ ⊢ k : loc[move∗] then CΓ
α =

k0Jgoto k.a?X.if (X =Γ (new m̃) v) then goto k0.(r0!
〈

v

. . . Behavioural Theory of Access and Mobility Control. . . 55

• The action contexts for outputs receive a value v and test its identity
against all known identifiers. In Figure 13 this testing is expressed
using the notation (X =Γ (new m̃) v), which is defined by

X = n if v = n 6= m
X 6∈ Γ if v = m
(X1 =Γ (new

. . . Behavioural Theory of Access and Mobility Control. . . 57

Proof:

58 M. Hennessy, M. Merro and J. Rathke

However the possible matching reductions are constrained by the barbs of
M0 in the extended environment; it has the barb δsucc@k0 but it does not
have δfail@k0. Effectively the reduction must have the form

D

. . . Behavioural Theory of Access and Mobility Control. . . 59

The mobility control presented here is not intended to be a definitive
treatment, rather a first step towards identifying the nature of contextual
equivalence in this setting. A clear progression of this work then would
be to introduce a more fine-grained mobility control mechanism into Dpi
or similar and to adapt the ideas presented here to understand contextual
equivalence. In another vein, we can investigate how the parameter T
affects equivalence. The use we make of it here is to allow testing at
any (initially) known location. At the other extreme we could fix T to
be empty. This would only allow tests to be placed at fresh locations —
thereby changing the nature of observability and simplifying the semantics
considerably. This may be the appropriate choice for testing equivalences
[7].

There has been a great deal of interest in modelling distributed systems
using calculi in recent years, [16, 6, 1, 4, 18, 9, 3]. The emphasis so far
has largely been on design of the languages to give succinct descriptions of
mobile processes with type systems given to constrain behaviour in a safe
manner. Where equivalence has been used it has typically been introduced
as some sort of contextual equivalence very similar to the one found in the
present paper [6, 1, 11]. Proofs of correctness of protocols or language
translations have been carried out with respect to these contextual equiv-
alences. Recently in [5] a form of bisimulation has been suggested as a
proof method for establishing contextual equivalence in the Seal calculus.
But, as far as we know, the only existing example of an operational char-
acterisation of behavioural equivalence in the distributed setting is found
in [12].

60 M. Hennessy, M. Merro and J. Rathke

use ΓD to denote the following list of environments:

k0:loc, move@k0, r0:rw〈∆k0
〉@k0

r1:rw〈∆k1
〉@k1, . . . , rn:rw〈∆kn

〉@kn

Lemma A.1 (General Extrusion). Let

. . . Behavioural Theory of Access and Mobility Control. . . 63

[4] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, June 2000.

[5] G. Castagna and F. Zappa. The seal calculus revisited. In 22th Conference on the
Foundations of Software Technology and Theoretical Computer Science. pringer-
Verlag, 2002. to appear.

[6] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In 7th International Conference on Con-
currency Theory (CONCUR’96), pages 406–421, Pisa, Italy, August 26-29 1996.
Springer-Verlag. LNCS 1119.

[7] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.,
1988.

[8] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in
the presence of subtyping. In Proc. CATS2002, Computing: Australasian The-
ory Symposium, Melbourne 2002, 2002. Also available as a University of Sussex
technical report.

[9] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82–120, 2002.

[10] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995.

[11] M. Merro, J. Kleist, and U. Nestmann. Mobile Objects as Mobile Processes. To
appear in Journal of Information and Computation, 2002.

[12] Massimo Merro and Matthew Hennessy. Bisimulation congruences in safe ambi-
ents. ACM SIGPLAN Notices, 31(1):71–80, January 2002.

[13] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[14] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and
II). Information and Computation, 100:1–77, 1992.

[15] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–454, 1996. Extended ab-
stract in LICS ’93.

[16] Peter Sewell. Global/local subtyping and capability inference for a distributed
pi-calculus. In ICALP 98, volume 1443 of LNCS. Springer, 1998.

[17] Asis Unyapoth and Peter Sewell. Nomadic pict: Correct communication infras-
tructure for mobile computation. In Conference Record of POPL’01: The 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

