
JPolicy: A Java Extension for Dynamic Access Control

Tim Owen Ian

Although this
lient-server mode of web servi
e intera
tion is a powerful

extension to the monolithi
 model, it
an involve a
onsiderable amount

of network traÆ
 for appli
ations that require intensive dialogue with a

remote servi
e. Furthermore,
lients with limited resour
es or
onne
tivity

are not always the most appropriate pla
e to exe
ute
ode that intera
ts

with a remote servi
e.

The basis of the Remote Evaluation [26℄ model (also termed Remote

Exe
ution, or just RE) is that servi
e providers a

ept programs from third-

party
lients and host the exe
ution of the
ode themselves. This extends

the RPC style by allowing
ode to be pa
kaged and sent to a server, rather

than simply supplying data with a request for the server to exe
ute its

own
ode.

Servi
es su
h as Google, Amazon and Ebay indi
ates that poli
y-based

ontrol of servi
e use is already of interest. In

to them as their unique entry point.

Sin
e the fun
tionality of a servi
e obje
t is a

essed through its meth-

ods, we
an
ontrol the behaviour of
lient programs that use the servi
e

by enabling or disabling the availability of ea
h servi
e API

modal, in the sense that the invo
ation of a modal method on some

obje
t
an only pro
eed if the obje
t is
urrently in the abstra
t state

named in the
lause.

� Ea
h obje
t of a
lass that
ontains modal methods maintains a no-

tion of whi
h abstra
t states it is
urrently in. For example, the Net-

workA

ess
lass in Figure 2 has modal methods naming an abstra
t

state
alled ALLOW NET and ea
h NetworkA

ess servi
e obje
t will

re
ord whether it is presently in the abstra
t ALLOW NET state or

not.

� The transitions between being in some abstra
t state and not are driven

by an external poli
y rather than the obje
t itself. The language sup-

ports the de�nition of poli
ies, that determine when an obje
t should

enter or leave an abstra
t state. The
onditions undersd
(2Tj
-409.0602 0 Td
(trans9(only)Tj
30.7(v)2999.27(o4.4v)2999itions)Tj
68.3598 0 Td
9nly)Tj
30.72.8 0 Td
[((b)3001.32.24Tj
68.bas 0 Td
(
alled)Tj
39
52.2 0 Td
(an)Tj
19
65.4 01d
(is)Tj
14.8v)0 Td
92
23i.2 0 Td
[(N3001.3(6
(
an)Tj
25.6199 0 Tdter)℄TJ
37.f0 TorsTd
(e49d
(of)Tj
16.9s84 0 Td
(in)Tj
expln)2 0 Td
624Tj
68.2402 0 Td
(8d)Tj
-388.68 (S)-6 Td
(de49dter)℄TJ
37.4797 Td
(not.)Tj
/R3566(32.24f
-98.0398 25.9199 Td
(�)Tj
/R34 0.12 Tf
12.2Cli.8801 Td98(ti
)3001.
(of)Tj
1
0 Td
[(metho(v)29990
eed)℄TJ
51.6402 0 TTd
n)Tj
36.8ttempts84 0.69lass)Tj
33.8o84 0 59(ds)℄TJ
5199 0 Td
[(in)3000.08(k 0 Td
[(Ne36.83f1
7(of)Tj
17.1602 01.
(of)Tj
1602 0 Td
[(mo)-2999.21tions)Tj
68.0598 0 Td
[(metho2999.29(that)Tj
31.J
42 0 T2stra
t)Tj
54.6801 0 Td
(2(is)Tj
14.8809 0 Td
[(pro)-3001.30d
(it)Tj
14.2f02 0 T2(en)℄TJ
-39.4801 0 T3tions)Tj
68.target Td
(states)Tj.7602 0 Td
[(ob)-6999.411ition)Tj
62.8801 0 2tra
tasersomeabsttion

meth2.8 0 Td
[(r2999.29(9ion)Tj
62.5199 0 Td69(d)Tj
-401.64 17.8801 Td
8 0 Td
ethy-3001.3d
(402.TJ
36.2402 0 (n
(or)Tj
18.81of)Tj
16.39
36.8339(only)Tj
30.7
li.88j
16.39)-3001.27(dal)℄TJ
42.3598 0 Td
t)Tj
53.199dl0 Td
(Figure)Tj
44.5602 0 Td
[(mo)-2999.27
alled invo
aje
tprool63eing

2 Modal Methods and Abstra
t States

The primary purpose of the JPoli
y extensions is to enable servi
e hosts to

ontrol when the methods in their Java servi
es
an be
alled. Sin
e the

fun
tionality of a servi
e is a

essed by invoking its methods, then we
an

enable or disable the use of parti
ular servi
e fun
tionality by sele
tively

blo
king the invo
ation of a method in that servi
e. This allows the servi
e

host to
ontrol what

a yes/no
ag, so e.g. a Sear
hEngine obje
t is either in the CAN SEARCH

abstra
t state or it is not. The a
tual meaning of the abstra
t state, in

terms of when individual obje
ts are in the state is determined by the

poli
y asso
iated with an obje
t | this is explained below in Se
tion 4.

Sin
e a
lass may
ontain several modal methods, ea
h with a when

lause potentially naming di�erent abstra
t state names, the result is a set

of independent abstra
t states. Ea
h obje
t of that
lass maintains a notion

of its
urrent
ombined status: whi
h abstra
t states it is presently in, and

whi
h it is not. This status then
ontrols the availability of methods,

be
ause the de
ision to allow a method
all of a modal method to pro
eed

is determined by whether the target obje
t is in the relevant abstra
t state

at that moment. A related issue here is that, in our
urrent design, only

instan
e methods
an be modal | we do not allow Java's stati
 methods

to have when
lauses. This is be
ause the abstra
t state is a property

of individual obje
ts, but stati
 methods are not invoked with respe
t to

any spe
i�
 obje
t. We
ould extend the language to allow stati
 modal

methods, by asso
iating the stati
 abstra
t state with the
lass itself, in

a similar way to Java syn
hronization on stati
 method
alls where the

lass's lo
k is used.

In terms of the diagram in Figure 2, the abstra
t state is the \swit
h"

that manipulates the handling of method invo
ations. As shown in the

NetworkA

ess servi
e, more than one modal method's when
lause
an

refer to a parti
ular abstra
t state. In that
ase, the availability of all those

modal methods is tied together: either they are all enabled or all disabled.

It is the task of servi
e programmers when adding when
lauses to make

this de
ision about whi
h modal methods should be
ontrolled by whi
h

abstra
t state names.

An important feature of our design is that obje
ts do not
ontrol the

status of their set of abstra
t states, rather this is the responsibility of

separate poli
ies. An obje
t enters or leaves an abstra
t state when its

asso
iated poli
y di
tates. We dis
uss the de�nition and use of poli
ies in

Se
tion 4.

9

result of the modal method
all if the invo
ation pro
eeds immediately,

and its s
ope is only within the following
ode blo
k. If the query method

is swit
hed o� due to the
urrent abstra
t state of the sear
hServi
e

obje
t then the
aller will not blo
k, but the method
all and
ode blo
k

will be skipped and exe
ution
ontinues after the blo
k. Another use of

this
onstru
t is to allow a se
ond blo
k of alternative
ode to be exe
uted

in the
ase of the modal method
all not pro
eeding:

try Ve
tor results=sear
hServi
e.query("some terms") {

//
ode blo
k using the results value

}

else {

// alternative
ode blo
k (results not in s
ope here)

}

Here, the alternative blo
k is exe
uted if the query
all
annot pro
eed

immediately. The third variation of this
onstru
t simply in
ludes a mil-

lise
ond timeout
lause to the modal method invo
ation attempt:

try for 100 Ve
tor results=sear
hServi
e.query("some terms") {

// as before

}

In this form, if the obje
t's abstra
t state
hanges to re-enable the method

within the spe
i�ed tTj
51.7199 0 Td
[(ob)vothe

in
otth8(s
op)-2999.9℄TJ
18.7203ne�t 0 Td
(A9)Tj
15.9602 0 Td
(to)Tj
16.560202 0 Td
(f)Tj
11.2801.4 0 Td
(to)This

As explained above, the
entral
on
ept in our work is the abstra
t

state of an obje
t, whi
h is re
e
ted in the set of named abstra
t states

that appear in modal method when
lauses. The availability of a modal

method is di
tated by the
urrent status of the target obje
t's asso
iated

abstra
t state. As Figure 2 shows, the role of poli
ies in JPoli
y is to

ause
hanges in the abstra
t state of obje
ts, whereas the servi
e obje
ts

themselves only examine the status and do not
hange it. This separation of

on
erns means that poli
ies are not hard-wired into the servi
e
ode itself.

Abstra
t states a
t as the intermediary: individual poli
ies determine when

to
hange an obje
t's abstra
t state, and the obje
t reads this status when

de
iding whether to allow a method invo
ation to pro
eed. Consequently,

the job of the poli
y de
laration
onstru
t we have in
luded in JPoli
y is

to de�ne exa
tly when an obje
t is in an abstra
t state and when it is not.

4.1 Poli
y Spe
i�
ation

In the JPoli
y language we extend the Java syntax with a top level
on-

stru
t for spe
ifying a poli
y. Therefore a
ompilation unit of Java
ode

ontains a list of
lass, interfa
e and poli
y de�nitions. Our model of a

poli
y is in the form of a labelled transition system | essentially a �nite

state automaton,
onsisting of a set of
on
rete states with transitions be-

tween them. The poli
y de�nition de
lares the name of the
lass for whi
h

it
an be used, then spe
i�es the sets of its
on
rete states that
orrespond

to ea
h abstra
t state of obje
ts of that
lass. The general form of a poli
y

spe
i�
ation is as follows:

poli
y Poli
yName for ClassName {

-> initialCon
reteState

transition
on
reteState1 ->
on
reteState2 when (
onditionA)

transition
on
reteState2 ->
on
reteState3 when (
onditionB)

...

ABSTRACT_STATE_X when { list of
on
rete states }

ABSTRACT_STATE_Y when { list of
on
rete states }

... // for ea
h named abstra
t state de
lared in ClassName

}

12

lass Sear
hEngine {

Ve
tor query(String sear
hTerm) when CAN_SEARCH { ... }

}

poli
y BoundedQueries (int bound, int interval) for Sear
hEngine {

int
redits = bound;

-> some;

// Every time we
all the method, the
ounter de
rements...

transition some -> some when (query)

{
redits =
redits-1; }

// Until none are left...

transition some -> none when (
redits <= 0);

// Then the
ounter is replenished at next time interval

transition none -> some when ((TimeServi
e.now % interval)==0)

{
redits = bound; }

CAN_SEARCH when { some }

}

Figure 3: Example Poli
y Spe
i�
ation

The parti
ular
on
rete states and transitions of these automata re
e
t the

spe
i�
 nature of ea
h poli
y. For example, suppose we are spe
ifying a

Google-like Web Servi
es poli
y that a
ertain modal method in a servi
e

an only be invoked a limited number of times in some time period. The

poli
y may have two
on
rete states, to represent whether the
all limit

has been rea
hed or not, and transitions between these based on a method

all
ounter and a time event. Figure 3 shows how this poli
y
an a
tually

be written using the JPoli
y syntax.

To assist in the
onstru
tion of poli
ies su
h as the
all limiter outlined

above, whi
h involves
ounting, poli
y spe
i�
ations
an in
lude lo
al vari-

ables that may be updated using a limited expression language. Without

this fa
ility, poli
ies that need to implement
ounters would have to spe
-

ify states to re
ord a
ount total, whi
h be
omes tedious and repetitive.

13

Figure 3 shows a lo
al variable named
redits that
ounts how many
alls

an still be made before the limit is rea
hed. Updating of lo
al variables,

su
h as in
rementing one used as a
ounter, is enabled by the addition of

an optional
lause in transition spe
i�
ations. This
lause, shown in bra
es

at the end of a transition de
laration, simply lists poli
y variable updates

| it is not arbitrary Java
ode.

A further enhan
ement of the poli
y
onstru
t is that it
an be param-

eterised by values, mu
h like the way a Java
lass
an be parameterised

by having its
onstru
tor de
lare a list of formal parameters. A poli
y's

named parameters
an be used to initialise its lo
al variables. In Figure 3

the BoundedQueries poli
y has been parameterised by the
all limit and

the time interval, rather than having these hard wired into the transitions.

The des
riptions above outline the general form of the poli
y
onstru
t,

but the utility and expressiveness of poli
ies is determined mainly by the

ontent of the boolean
onditional expressions used to label transitions.

In Figure 3, the BoundedQueries poli
y illustrates the use of most of the

terms that
an be referred to in
ondition expressions. In some
ases, the

transitions.

Poli
y lo
al variables Poli
ies
an de
lare a number of mutable lo
al

variables, and these
an be referred to in transition
onditions. These

variables
an be updated by assigning new values when a transition

o

urs.

Poli
y parameters The named parameters of a poli
y
an be
onsidered

as un
hanging lo
al variables, like final method parameters in Java.

The example poli
y uses the interval poli
y parameter in its

deny
lients the ability to
hange the poli
y asso
iated with these obje
ts.

Clearly, if
lients
ould repla
e the poli
ies atta
hed to servi
e obje
ts

then they
an subvert the host's
ontrol on servi
e usage | thus defeating

the purpose of poli
y-based
ontrol. In JPoli
y, we
an prevent this by

restri
ting the ability to
hange an obje
t's poli
y to the servi
e provider

only. This is a
hieved by using a Java interfa
e type for the
lient's view of

a servi
e, and
onstraining the semanti
s of the poli
y assignment
onstru
t

so that it
an only be used to
hange the poli
y of an obje
t that is handled

through a variable of
lass type. Clients do not know the name of the
lass

that

pattern of translation for a modal method su
h as:

publi
 Ve
tor query(String sear
hTerm) when CAN_SEARCH {

// original method body

}

is to generate this set of three Java methods:

private Ve
tor query_ORIGINAL(String sear
hTerm) {

// Notify the
urrentPoli
y that the method has been

// invoked, then...

// exe
ute the original method body

}

publi
 Ve
tor query(String sear
hTerm) {

// Blo
k waiting for the obje
t to be in the CAN_SEARCH

// abstra
t state, then...

return this.query_ORIGINAL(sear
hTerm);

}

publi
 Ve
tor query_ATTEMPT(int timeout, String sear
hTerm)

throws MethodUnavailableEx
eption {

// Wait at most timeout millise
onds for the obje
t to be

// in the CAN_SEARCH abstra
t state, then...

if (/* obje
t is now in the abstra
t state */)

return this.query_ORIGINAL(sear
hTerm);

else

throw new MethodUnavailableEx
eption();

}

We use standard Java syn
hronization features to implement the waiting

for abstra
t states | this avoids a busy wait loop by putting the
alling

thread to sleep until the poli
y obje
t noti�es the thread that the abstra
t

state has
hanged. Sin
e the set of abstra
t states is a
tually stored in the

poli
y obje
t, the servi
e obje
t uses its
urrentPoli
y instan
e �eld to

request the
urrent status of an abstra
t state.

18

The �rst of the two generated Java wrappers has an identi
al signature

to that of the original method written in the JPoli
y language (on
e the

when
lause has been erased). This means that
lient

unknown and untrusted third parties, and therefore wish to prote
t their

ma
hines from mali
ious, greedy or poorly-written programs. There are a

number of existing te
hniques that address this issue of program behaviour

ontrol:

Sandboxing is used to
ontrol how a program
an a

ess resour
es in its

exe
ution environment. The Java Se
urity Manager ar
hite
ture[14,

27℄ is founded on this approa
h, where
alls to
riti
al library

This approa
h has been used in A
tive Network systems[1, 20℄ to limit

the a

ess of mobile
ode to resour
es on the network node. Work on

mobile Java
ode agents[17℄ prote
ts servi
es by narrowing the view of

a servi
e interfa
e, whi
h prevents
lient
ode from linking to
ertain

methods. When a program is dynami
ally linked before exe
ution,

all external dependen
ies are mat
hed up with the library modules

that provide these fa
ilities. A servi
e host
an use se
urity poli
ies

to
ontrol the linking pro
ess and thereby deny a

ess to parti
ular

servi
es, or perhaps link against di�erent implementations of a library

depending on the required level of fun
tionality. Here, a limitation

ode that is a

essing the servi
e. Furthermore, our design does not require

the
lients to be written using the extended language |
lient
ode in plain

Java
an still use poli
y-
ontrolled servi
es.

Our design involves a relatively simple and intuitive extension to the

Java programming model, whereby programmers annotate those methods

for whi
h a

ess
ontrol is required. The poli
ies that
ontrol this a

ess

are spe
i�ed using the familiar model of a state ma
hine, whi
h enables

a
on
ise representation of the required a

ess
ontrol. As explained in

Se
tion 5

Appendix: Generated Code

The following simple servi
e
lass and poli
y (from Figure 3) are used to

demonstrate the form of the generated Java
ode. The JPoli
y sour
e
ode

is:

lass Sear
hEngine {

Ve
tor query(String sear
hTerm) when CAN_SEARCH {

return new Ve
tor();

}

}

poli
y BoundedQueries (int bound, int interval) for Sear
hEngine {

int
redits = bound;

-> some;

transition some -> some when (query) {
redits =
redits-1; }

transition some -> none when (
redits <= 0);

transition none -> some when ((TimeServi
e.now % interval)==0)

{
redits = bound; }

CAN_SEARCH when { some }

}

From this sour
e, the following Java
ode is produ
ed by our
ompiler:

lass Sear
hEngine extends java.lang.Obje
t {

stati
 Sear
hEngine.Poli
y defaultPoli
y = new Sear
hEngine.Poli
y();

publi
 Sear
hEngine.Poli
y
urrentPoli
y = Sear
hEngine.defaultPoli
y;

Ve
tor query(String sear
hTerm) {

if (! (this.
urrentPoli
y.get(0)))

syn
hronized (this.
urrentPoli
y) {

while (! (this.
urrentPoli
y.get(0)))

try { this.
urrentPoli
y.wait(); }

at
h (InterruptedEx
eption CAUGHT_EXCEPTION) { }

}

else { }

return this.query_ORIGINAL(sear
hTerm);

}

Ve
tor query_ATTEMPT(int timeoutMillis, String sear
hTerm)

throws MethodUnavailableEx
eption {

if (timeoutMillis != 0 && ! (this.
urrentPoli
y.get(0)))

25

syn
hronized (this.
urrentPoli
y) {

try { this.
urrentPoli
y.wait(timeoutMillis); }

at
h (InterruptedEx
eption CAUGHT_EXCEPTION) { }

}

else { }

if ((this.
urrentPoli
y.get(0)))

return this.query_ORIGINAL(sear
hTerm);

else throw new MethodUnavailableEx
eption();

}

private Ve
tor query_ORIGINAL(String sear
hTerm) {

this.
urrentPoli
y.query_METHOD_CALLED();

return new Ve
tor();

}

stati

lass Poli
y extends java.lang.Obje
t {

publi
 boolean get(int state) {

return true;

}

publi
 void query_METHOD_CALLED() { }

}

}

publi

lass BoundedQueries extends Sear
hEngine.Poli
y

implements TimeServi
e.now_LISTENER {

private int
redits;

private java.util.BitSet abstra
tStates = new java.util.BitSet(1);

private int
on
reteState;

private final Sear
hEngine TARGET;

private final int bound;

private final int interval;

private syn
hronized void DO_TRANSITION_0() {

{

this.
redits = this.
redits - 1;

}

if (this.
redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

}

private syn
hronized void DO_TRANSITION_1() {

TimeServi
e.ADD_LISTENER_FOR_now(this);

{ }

this.
on
reteState = 1;

this.abstra
tStates.
lear(0);

26

this.notifyAll();

}

private syn
hronized void DO_TRANSITION_2() {

TimeServi
e.REMOVE_LISTENER_FOR_now(this);

{

this.
redits = this.bound;

}

this.
on
reteState = 0;

if (this.
redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

this.abstra
tStates.set(0);

this.notifyAll();

}

publi
 syn
hronized void query_METHOD_CALLED() {

if (this.
on
reteState == 0) this.DO_TRANSITION_0(); else { }

}

publi
 syn
hronized void TimeServi
e_UPDATED_WATCHABLE_now() {

if (this.
on
reteState == 1 &&

((TimeServi
e.now % this.interval) == 0))

this.DO_TRANSITION_2(); else { }

}

publi
 stati
 BoundedQueries makePoli
y(Sear
hEngine TARGET,

int bound,

int interval) {

return new BoundedQueries(TARGET, bound, interval);

}

publi
 boolean get(int state) {

return this.abstra
tStates.get(state);

}

private BoundedQueries(Sear
hEngine TARGET,

int bound,

int interval) {

this.TARGET = TARGET;

this.bound = bound;

this.interval = interval;

this.
redits = this.bound;

this.
on
reteState = 0;

this.abstra
tStates.set(0);

if (this.
redits <= 0) this.DO_TRANSITION_1(); else { }

}

}

27

Referen
es

[1℄ D. S. Alexander, Paul B. Menage, W. A. Arbaugh, A. D. Keromytis,

K.G. Anagnostakis, and J. M. Smith. The Pri
e of Safety in an A
-

tive Network. IEEE/KICS Journal of Communi
ations and Networks

(JCN), Mar
h 2001.

[2℄ Amazon. Web Servi
es, 2003. Online do
ument http://www.amazon.

om/gp/aws/landing.html.

[3℄ A. D. Birrell and B. J. Nelson. Implementing remote pro
edure
alls. In

Pro
eedings of the ACM Symposium on Operating System Prin
iples,

1983.

[4℄ Lu
a Cardelli. Abstra
tions for mobile
omputation. In Se
ure Internet

Programming, pages 51{94, 1999.

[5℄ Yoonsik Cheon and Gary T. Leavens. A runtime assertion
he
ker for

the Java Modeling Language (JML). In International Conferen
e on

Software Engineering Resear
h and Pra
ti
e (SERP '02), June 2002.

[6℄ M. Covington, M. Moyer, and M. Ahamad. Generalized role-based

a

ess
ontrol for se
uring future appli
ations. In 23rd National Infor-

mation Systems Se
urity Conferen
e, Baltimore, MD, O
tober 2000.

[7℄ Karl Crary and Stephanie Weiri
h. Resour
e bound
erti�
ation. In

Pro
eedings of the 27th ACM SIGPLAN-SIGACT Symposium on Prin-

iples of Programming Languages (POPL-00), pages 184{198. ACM

Press, January 2000.

[8℄ Ni
odemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-

man. The Ponder Poli
y Spe
i�
ation Language. Le
ture Notes in

Computer S
ien
e, 1995:18{38, January 2001.

[9℄ Robert DeLine and Manuel F�ahndri
h. Enfor
ing High-Level proto
ols

in Low-Level software. In Pro
eedings of PLDI-01, volume 36(5) of

ACM SIGPLAN Noti
es, pages 59{69, June 2001.

28

[20℄ Paul Menage. RCANE: A Resour
e Controlled Framework for A
tive

Network Servi
es. In Pro
eedings of the First International Working

Conferen
e on A
tive Networks (IWAN '99), volume 1653, pages 25{

36. Springer-Verlag, 1999.

[21℄ J. Gregory Morrisett, Karl Crary, Neal Glew, and David Walker.

Sta
k-based typed assembly language. Journal of Fun
tional Program-

ming, January 2002.

[22℄ R. Pandey and B. Hashii. Providing �ne-grained a

ess
ontrol for

mobile programs through binary editing. Te
hni
al Report TR-98-08,

UC Davis, 1998.

[23℄ Fred B. S
hneider. Enfor
eable se
urity poli
ies. Information and

System Se
urity, 3(1):30{50, 2000.

[24℄ Beverly S
hwartz. Introdu
tion to spanner: Assembly language for the

smart pa
kets proje
t. Te
hni
al report, BBN-TM-1220, September

1999.

[30℄ I. Wakeman, A. Je�rey, T. Owen, and D. Pepper. Safetynet: A

language-based approa
h to programmable networks. Computer Net-

works and ISDN Systems, 36(1):101{114, 2001.

[31℄ D. Wetherall, J. Guttag, and D. Tennenhouse. Ants: A toolkit for

building and dynami
ally deploying network proto
ols, 1998.

[32℄ WWW Consortium (W3C). Web Servi
es A
tivity, 2003. Online spe
-

i�
ation do
uments

