

1 Labelled Transition Systems

In this series of lectures we will be interested in the extending an existing semantic theory

of standard process algebras to encompass at least some aspects of timed systems. Ac-

cordingly in this �rst section we will review the situation for standard \untimed process

algebras".

In general a process algebra may be viewed as a speci�cation or description language

for communicating concurrent systems which emphasises their conceptual structure. Es-

sentially a process algebra consists of a collection of combinators for constructing new

descriptions from existing ones together with a set of laws or equations for manipulating

these descriptions. A large number of process algebras have by now been proposed in the

literature; we will try to avoid getting embroiled in the details of these individual lan-

guages, each with their own advantages and disadvantages, by simply choosing to work

with our favourite, CCS, [Mil89]; however most of what we say is equally applicable to

other process calculi such as CSP and ACP. We will also work as much as possible at

the more abstract level of intensional operational semantics.

We describe concurrent systems in terms of their ability to perform actions. For the

most part the nature of these actions will be unspeci�ed and we will simply assume a

set of possible actions Act; typically these are some form of synchronisations with other

concurrent systems. But we will have need for a special action symbol � , which we

assume is not in Act, to represent internal synchronisations or activity of a system. For

convenience we use Act

�

to represent Act[f�g, ranged over by �, while a ranges over the

external actions Act. The ability of a concurrent system to perform these uninterpreted

actions can be conveniently represented in terms of labelled transition systems:

De�nition 1.1 A labelled transition system is a triple < P;Act

�

;�!> where

P is a set of process states

Act

�

is, as already explained, a set of external actions Act and special action �

�! is a subset of P � Act

�

� P ; we write p

�

�! q instead of (p; �; q) 2�!

2

Intuitively p

�

�! q means that in the state p the process may perform the action � and

thereby be transformed into the the state q.

An arbitrary process algebra may be given an intensional semantics by interpreting

it as a labelled transition system. A standard method for doing so is by structural oper-

ational semantics, [Plo81]. The simplest way to explain this is to consider an example,

the language CCS. In CCS communication or synchronisation is a binary operation, i.e.

it involves only two participants, one sending the synchronisation signal and the other

receiving it. Accordingly we assume that Act is equipped with a complementation oper-

ation a and informally we view a as the action of sending a synchronisation signal on a

virtual communication channel a while the action a represents its receipt.

The terms of the language are de�ned by

p ::=
 j nil j P j �:p

j p+ p j p j p

j p[S] j pnA; A � Act

2

We have the constant processes nil which can do no actions and
 which can only diverge

and we are allowed the use of process identi�ers such as P which will have associated

with them a de�nition of the form

P(= t:

The combinators of the language are

action pre�xing: �:p is a process which can perform the action � and then become the

process p

choice: p+ q is the process which can act like p or q

parallel : p j q is the process which consists of two subprocesses p and q running in

parallel

restriction: pnA is a process which acts like p except that all actions in A and their

complements are local to p

renaming: p[S] is a process which acts like p except that the actions performed are

relabelled using the relabelling function S; it is assumed that S is a function over

Act which preserves complementation and which is almost everywhere the identity.

We will also assume that S(�) = � .

When writing terms in this language we will observe the usual rules of precedence between

the operators,

nA = [S] > pre�xing > j > +

and we will usually omit trailing occurrences of nil.

This informal description of the intended meaning of the combinators is made pre-

cise by providing the language with an operational semantics. This involves de�ning a

relation

�

�! between process terms for each action �. To do so we assume the existence

of a declaration, i.e. a set of de�nitions of the form

P(= p;

one for each identi�er; the term associated with an identi�er in a declaration D will be

referred to as its body, and denoted by D(P); for convenience we will assume that each

occurrence of any identi�er in the bodies of a declaration are

(Op1) �:p

�

�! p

(Op2) p

�

�! p

0

implies p + q

�

�! p

0

(Op3) p

�

�! p

0

implies p j q

�

�! p

0

j q

(Op4) p

�

�! p

0

implies pnA

�

�! p

0

nA

provided A admits �

(Op4) p

�

�! p

0

implies p[S]

S(�)

�! p

0

[S]

(Op5) D(P)

�

�! p

0

implies P

�

�! p

0

(Op6) p

a

�! p

0

; q

a

�! q

0

implies p j q

�

�! p

0

j q

0

(Op7)

�

�!

Figure 1: Operational semantics of CCS

the process states consists of all the terms in the language

the next-state relations

�

�! are de�ned in Figure 1.

Alternatively we can view every process term p as a labelled transition system obtained

by restricting the set of process states to those accessible from p; note that this labelled

transition system is rooted. Not much distinction will be made between these two slightly

di�erent views of the intensional semantics of CCS. We will also generally consider the

process states of a transition system as simply processes.

As an example of a process description consider the de�nition

VM (= coin:(VM

t

+ VM

c

)

VM

t

(= tea:VM

VM

c

(= co�ee:VM

This is a simple vending machine which when given a coin will perform exactly one of

the actions tea or co�ee. It has slightly di�erent behaviour than the vending machine

de�ned by

VM

i

(= coin:(�:VM

t

+ �:VM

c

)

VM

t

(= tea:VM

VM

c

(= co�ee:VM

4

When given a coin this machine will also provide either tea or co�ee but, in contrast

to VM there is no knowing which will be provided. The di�erence between these two

machines can be seen by putting them in parallel with a user such as

User

t

(= coin:tea:happy

One can check that the process (User

t

j VM)nA, where A = fcoin; tea; co�eeg will always

reach the happy state, i.e. will always perform the action happy. On the other hand the

process (User

t

j VM

i

)nAmay or may not reach this state depending on what the vending

machine chooses to provide.

The intensional semantics of a process algebra as expressed in a labelled transition

system gives a relatively abstract view of how a process behaves in terms of the actions

it performs. However two processes, or process descriptions, could have very di�erent

representations as labelled transition systems and still be considered to be extensionally

equivalent in the sense of providing more or less the same behaviour to any potential

user. For example the process descriptions (User

t

j VM)nA and happy:nil yield di�erent

labelled transition systems but one can argue that they should be considered to be ex-

tensionally equivalent. Much research has been carried out into what exactly extensional

equivalence should mean and a number of viable alternatives have emerged. In these

lectures we will concentrate on one possibility, called testing equivalence [Hen88], where

informally two processes are deemed to be extensionally equivalent if there is no test

which can possibly

that is, it is either in�nite or has a maximal element e

m

j p

m

from which no further

derivation can

(W1) a:p

�

�! a:p

nil

�

�! nil

(W2) p

�

�! p

0

; q

�

�! q

0

implies p+ q

�

�! p

0

+ q

0

(W3) p

�

�! p

0

; q

�

�! q

0

;

p j q 6

�

�! implies p j q

�

�! p

0

j q

0

(W4) p

�

�! p

0

implies pnA

�

�! p

0

nA

(W5) p

�

�! p

0

implies p[S]

�

�! p

0

[S]

(W6) p 6

�

�! implies bpc(q)

�

�! q

(W7) D(P)

�

�! p

0

implies P

�

�! p

Figure 2: The passage of time in TEPL

It is worth examining in detail the behaviour of the timeout construct. In bpc(q)

if p can perform any action � then it will do so and the \exception" process q will be

discarded. If on the otherhand no opportunity for synchronisation is forthcoming, and

this includes the supposition that p 6

�

�! , then when the clock tick arrives the new residual

will be q, i.e. under those assumptions bpc(q)

�

�! q. Thus (a:p j ba:qc(r))nfag can only

perform a � move to (p j q)nfag while (b:p j ba:qc(r))nfa; bg, under the assumption that

a 6= b, can only wait by performing a � move and become (b:p j r)nfa; bg. Notice that

the language does not have a simple delay construct. But it can be implemented as

bnilc(p); this process can do nothing until the �rst time cycle when it becomes p. Since

this delay construct will be frequently used we introduce an abbreviation for it.

De�nition 2.2 We use �:p to denote the term bnilc(p). This notation should be intuitive

because the only action it can perform is � to become p. 2

With these rules we now have an interpretation of the language TPL as a t-labelled

transition system where the process states consists of the terms from TPL and the next-

state relations

�

�! are de�ned by the rules just outlined. In order to illustrate these

rules we now consider a simple example, again a vending machine.

VM

d

(= coin:�:VM

t

VM

t

(= btea:VM

d

c(VM

c

)

VM

c

(= bco�ee:VM

d

c(VM

d

)

The vending machine will accept a coin as before and then after a time cycle will be

in the state VM

t

. Here it will produce tea if requested or after another time cycle

will produce co�ee. The next time cycle will bring the machine back to the original

state VM

d to the original

state

behaviour is somewhat more complicated than the original vending machine it can still

be used successfully by users who want a particular drink. For example (User

t

j VM)nA,

where as before A = fcoin; tea; co�eeg, will always reach the happy state and the same

is true of User

c

de�ned by

User

c

(= coin:co�ee:happy:nil

However users have to be a little careful of how long they wait before accepting their

drink. For example the user User

2

t

de�ned by

User

2

t

(= coin:�

2

:tea:happy:nil;

where �

2

:p is an abbreviation for �:�:p, will not reach the happy state although the

corresponding user who wants co�ee will have no problem.

We now reconsider various properties that one might want to associate with the

special action �. Each of the following lemmas refer to the particular t-labelled transition

system determined by TPL.

Lemma 2.3 (Time-determinism) If p

�

�! q and p

�

�! r then q and r are syntactically

identical.

This is a natural property to associate with the passage of time although there are process

algebras which do not have this property, [Gro90].

Lemma 2.4 (Maximal progress) If p

�

�! then p 6

�

�!

This is the formal counterpart to our fourth informal assumption about the nature of

processes. Again there are timed process algebras which do not satisfy this property,

[NS90, MT90]. One advantage of

&%

'$

A

&%

'$

UM

&%

'$

RM

&%

'$

B

�

�

�

�

�

�

�3

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�*

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

H

H

H

H

H

H

HY

t t

t t

t t

t t

t

t

t

t

tt

a b

m

u

m

ub

ack

b

ack

m

r

m

rb

Figure 3: The security costs protocol

states in a t-labelled transition systems and the interaction relation 7! is de�ned

in exactly the same way; a parallel operator is de�ned between arbitrary t-labelled

transition systems using the rules (Op3) with � equal to � , (Op6) and (W3) and e j p 7!

e

0

j p

0

if e j p

�

�! e

0

j p

0

or e j p

�

�! e

0

j p

0

. This leads as before to a semantic preorder

de�ned by:

in a t-labelled transition system p

<

�

t

q if p guarantees e implies q guarantees e

for every experimenter e,

and the associated equivalence relation is denoted by '

t

.

Question: Design two tests which show that the processes VM and VM

d

are incompa-

rable with respect to

<

�

t

. 2

We aim to show that this new semantic equivalence between timed systems enjoys

many of the desirable properties of the original testing equivalence'. In particular it has

a reasonable mathematical theory and an associated proof system based on equational

rewriting.

We end this section with a slightly more extended example of a timed process de-

scription using TPL. We view it as a pro-typical example of the potential use of TPL;

only one process involved uses a timing construct and the remainder are described using

the

It accepts a message destined for it, called m

r

and sends it on to B in the form of

the action m

rb

. Alternatively it acts as conduit for acknowledgements from B to A: it

accepts an acknowledgement from B in the form of the action ack

b

and passes it on as

ack to A. The unreliable medium is de�ned by

UM(= m

u

:(�:UM+ �:m

ub

:UM)

It accepts a message and then nondeterministically decides to either lose it and return to

the original state UM or to send it on to B in the form of the action

3 Acceptances and Barbs

In this section we investigate the properties of processes which determine their ability

to guarantee tests. This is essential if we are going to develop a theory of '

t

; it is easy

to demonstrate that two processes are not extensionally equivalent as one only has to

provide a test which distinguishes them but to show that they are equivalent we must

establish that they guarantee exactly the same set of tests. Rather than consider the

reaction of processes with respect to all tests we extract the relevant behaviour of their

operational semantics which in e�ect determines which equivalence class of '

t

a process

belongs to.

Before we start we need some de�nitions which are given relative to an arbitrary t-

labelled transition system although they apply equally well to labelled transition systems

since the latter may be considered as t-labelled transition systems where the relation

�

�!

is empty. For any s 2 (Act

�

)

�

let the relations

s

=) be de�ned in the obvious way:

1. p

"

=) p

2. p

�

�! p

0

; p

0

s

=) q implies p

�:s

=) q

3. p

�

�! p

0

; p

0

s

=) q implies p

s

=) q

4. p

s

=) p

0

; p

0

�

�! q implies p

s

=) q.

Let S(p) denote the set f a 2 Act j p

a

=)g and we say that p is stable if p 6

�

�! . Finally we

say that p diverges if there exists an in�nite sequence

if X is
 then q *

if X is a �nite subset of Act then q is stable and X = S(q).

We use Acc(p) to denote the set of acceptances generated by p.

These de�nitions enable us to state a condition which is su�cient to ensure that

processes in an arbitrary labelled transition system are related extensionally. Of course

in a labelled transition system acceptances have no occurrence of the timed action �.

Theorem 3.1 In any labelled transition system Acc(p)�

a

Acc(q) implies p

<

�

q.

Proof: See [Hen88]. 2

The converse depends essentially on the expressive power of the labelled transition

system in question. For example if in the labelled transition system every process which

can do an a action can also do a b action with the same e�ect then the two processes

a:nil + b:nil and �:a:nil + b:nil will not be distinguishable; but they will in a labelled

transition system which has a process which can not do a b action but can do an a

action to a terminated state. We will not go detail about the exact expressive power

necessary. Instead let us just say that a labelled transition system is su�ciently expres-

sive if it contains a denotation for every �nite term in fCCSseq, i.e. terms in CCS which

only use the combinators nil; + and pre�xing by actions in Act

�

.

Theorem 3.2 In a su�ciently expressive �nitely branching labelled transition system

p

<

�

q implies Acc(p) �

a

Acc(q).

Proof: See [Hen88]. 2

Question: Is this true if the condition on �nite branching is dropped ? 2

This is the situation, which is well-known, for testing in labelled transition systems.

Let us now consider t-labelled transition systems. In fact we will restrict our attention to

particular kinds of t-labelled transition systems, essentially those having the properties

of TPL discussed in the previous section.

De�nition 3.3 A t-labelled transition system is called regular if it satis�es

1. (Time-determinism) If p

�

�! q and p

�

�! r then q = r

2. (Maximal progress) If p

�

�! then p 6

�

�!

3. (Patience) If p 6

�

�! then p

�

�!

2

One can easily show that the characterisation of testing in terms of acceptances for

Example 3.4 Let p; q denote the terms a + �:b; �:a + �:(a + b) respectively. Then

Acc(p)�

a

Acc(q) but p

6<

�

t

q; they can be di�erentiated by the test �:(a:fail+ b). This is

guaranteed by p because when the clock tick happens all possible synchronisations will

have occurred, in particular all � actions, and so only b is possible. However in q when

the clock tick occurs a is also possible and using it to synchronise with the tester leads

to the terminal unsuccessful state fail j nil. 2

So in order to characterise testing in regular t-labelled transition systems we need to take

into account more information about processes than that contained in their acceptances.

But before tackling this problem another aspect of the example deserves comment. Both

p and q are terms in CCS and are extensionally equivalent for untimed testing, i.e. p ' q

in the labelled transition system determined by CCS, but when considered as timed

processes, i.e. as terms of TPL, they are not equivalent, p 6'

t

q. This is because although

they are untimed processes which can not be distinguished using untimed tests there is

a timed test which can tell them apart!. A more striking example of this phenomenon,

taken from [Lan89], is given by the two processes

coin:(tea+ hit:tea) + coin:(co�ee+ hit:co�ee)

and

coin:(tea+ hit:co�ee) + coin:(co�ee+ hit:tea)

whose behaviour as labelled transition systems are given in Figure 4. They have exactly

the same acceptances, namely

�ffcoingg

coinfftea; hitgg coinffco�ee; hitgg

coin:teaf;g

coin:co�eef;g

coin:hit:ffteagg coin:hit:ffco�eegg

coin:hit:tea:f;g

coin:co�ee:tea:f;g

But they can be distinguished by the timed test coin:(tea: + �:hit:tea). This test says

that if you can not do a tea action immediately after doing a coin action then you will

be able to do so after performing a hit action.

This phenomenon may strike the reader as odd but on re
ection it is not unnatural.

These processes are really timed systems which when viewed as labelled transitions

systems have their timing features abstracted away to such an extent that they can

no longer be distinguished. Moreover this abstraction from time is consistent in the

sense that so long as we only test using similarly abstracted processes then this level

of abstraction can be maintained and we obtain coherent theory of \time-free" process

descriptions.

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

teaco�ee

coin

�

A barb therefore has the form

s

1

A

1

s

2

A

2

:::s

k

X

where each s

i

2 (Act [�)

�

, each A

i

is a �nite subset of Act and the �nal X is either

 or again a �nite subset of Act. This barb is generated by the process p if there is a

derivation of the form

p

s

1

=) p

1

s

2

=) p

2

: : :

s

k

=) p

k

where each p

i

is stable, for 1 � i < k S(p

i

) = A

i

and if the �nal X is
 then p

k

* and

otherwise p

k

is also stable with S(p

k

) equal to X. We use Barb(p) to denote the set of

barbs generated by p. Barbs are ordered in much the same way as acceptances: �

b

is

the least relation over barbs which satis�es

�

b

b for any barb b

A�

b

A

0

if A � A

0

ab�

b

ab

0

if b�

b

b

0

Ab�

b

A

0

b

0

if b�

b

b

0

and A � A

0

and is lifted to sets of barbs in exactly the same way as acceptances.

Theorem 3.6 In any regular t-labelled transition system if p and q are h-�-constant

then Barb(p)�

b

Barb(q) implies p

<

�

t

q. 2.

Question: Which of the clauses in the de�nition of regular t-labelled transition system

can be dropped while maintaining this result ? 2

Once again the converse depends on the expressive power of the t-labelled transition

system in question and let us say that it is su�ciently expressive if it contains a deno-

tation for every term in the language de�ned using nil; + and pre�xing by every action

in Act

��

. We then obtain

Theorem 3.7 In any �nite branching regular t-labelled transition system if p and q are

h-�-constant then p

<

�

t

q implies Barb(p)�

b

Barb(q). 2

This means that for a large class of t-labelled transition systems barbs capture exactly

the ability of \time-free" processes to guarantee tests. Is the same true for arbitrary

processes ? Unfortunately the answer is no.

Example 3.8 Let p; q be the processes �:(b+ �:a) + �:(a+ c) and a+ b. We will soon

be able to check that p

<

�

t

q but their barbs are not properly related. The barb fa; bga

is generated by q but p

Theorem 3.9 In any su�ciently expressive �nite-branching regular t-labelled transition

system p

<

�

t

q if and only if SBarb(p) �

b

SBarb(q). 2

Question: De�ne a closure operator, C, on sets of barbs with the property thatB �

b

B

0

if and only if C(B

0

) � C(B). 2

Question: A t-labelled transition system is divergence free if it contains no in�nite �

derivations. De�ne a closure operator C

0

on barbs with the property C

0

(B) is �nite if B is

�nite and which satis�es Barb(p) �

b

Barb(q) if and only if C

0

(Barb(p)) � C

0

(Barb(q)),

1: Reflexivity

t � t

2: T ransitivity

t � t

0

; t

0

� t

00

t � t

00

3: Substitution

t � t

0

f(t) � f(t

0

)

for every operator f

4: Instantiation

t � t

0

t� � t

0

�

for every substitution �

5: Inequations

t � t

0

for every inequation

t � t

0

in E

6:
�Rule

 � t

Figure 5: The Proof System

p

<

�

+

q if for some action a not occurring in p; q; a+ p

<

�

a+ q.

One can show that

<

�

is preserved by all the operators of CCS and moreover is the

largest such relation contained in

<

�

. Accordingly we transfer our attention to giving

an inequational characterisation for

<

�

+

and the related congruence '

+

.

Question: Show that for any p; q; r the following is true:

((�:p + �:q) j r)nA '

+

�:(p j r)nA+ �:(q j r)nA

(a:p j a:q j r)nfag '

+

�:(p j q j r)nfag

2

Many of the required equations are not of any particular interest and are relegated

to the appendix; these simply state obvious properties of restriction, renaming,
 and

+, most of which are discussed at length in [Mil89]. Here we will concentrate on two

aspects of the equational system, the interleaving law which relates parallel composition

to nondeterminism and the laws governing � . The �rst is given in Figure 6 and applies

only to terms of the form

P

I

�

i

:x

i

j

P

J

�

j

:y

j

. This parallel term can be rewritten to

a nondeterministic term which essentially has a pre�x for each of the possible actions

which x and y can perform either individually or together. The � laws, of which there

are �ve, are given Figure 7.

Let E

1

denote the collection of all these inequations.

Theorem 4.1 For all p; q in fCCS p

<

�

+

q if and only if p �

E

1

q.

18

For x = b

P

I

�

i

:x

i

c(x

�

) and y = b

P

J

�

j

:y

j

c(y

�

)

x j y = b

P

I

�

i

:(x

i

j y) +

P

J

�

j

:(x j y

j

) +

P

where A is de�ned by A(= bac(A) and this can not be proved by the equations even

with the help of !-induction!. We need to add one more rule, called the Stability rule,

to the proof system:

P

i2I

�

i

:t

i

� S

where S is de�ned by S(= b

P

i2I

�

i

:t

i

c(S).

A quite useful form of induction is called Unique Fixpoint Induction. The form is

identical that of Recursion Induction but the inequality is replaced by equality.

If fP

i

(= D

i

j i 2 I g is a declaration and for each i 2 I there is a process q

i

such that D

i

fq=P g = q

i

then for each i 2 I; P

i

= q

i

Unfortunately it is unsound for the standard extensional equivalences including '

and '

t

. However for a large class of de�nitions it is sound and it is the rule which tends

to be most used in the literature. If we ensure it is used only for de�nitions where in the

bodies all occurrences of process names are all guarded by external actions and do not

occur within occurrences of j then we will not run into di�culty.

Question: Show that if we allow process names to be guarded by � then Unique

Fixpoint Induction becomes unsound.

Give an example which shows that if we allow occurrences of process names within j,

even if they are guarded by external actions, then the rule is also unsound. 2

5 An Example Proof

In this section we discuss how one might use the proof system to prove properties of of

timed systems. We use as an example the security costs protocol of section two.

As in the untimed case the proof methodology consists in using the proof system

as the basis for a transformation system for manipulating process descriptions. The

most common use of the resulting transformation system is to transform a description

of a high-level speci�cation of a system into a more detailed description of a proposed

implementation. Refering to the example in section two this means transforming SPEC

into SYS. Since the proof system is complete in some sense in theory one should be able to

transform any two behaviourally related processes into each other using the inequations.

But is practice it is virtually essential to augment the set of equations with more useful

transformations. For example

x j y = y j x

x j nil = nil j x

(x j y) j z = x j (y j z)

are all sound and are not derivable in the complete proof system. Two other interesting

transformations involving parallel are

((�:x

1

+ �:x

2

) j y)nA = �:(x

1

j y)nA + �:(x

2

j y)nA

(a:x j a:y j z)nA = �:(x j y j z)nA if a 2 A

22

However the most useful transformation rule is a generalisation of the interleaving law to

the case where an arbitrary number of processes are running in parallel and a restriction

is in force.

Let us start by manipulating SY S. By unwinding each of the recursive de�nitions,

applying EXP� and rewinding we obtain

SY S = a:(A

1

j RM j UM j B)nI

where A

1

is m

u

:b ack: ack:Ac(m

r

: ack:A). This procedure of unwinding de�nitions, ap-

plying some form of the expansion theorem and rewinding some of the resulting processes

is a very frequently used proof tactic. In fact the unwinding and rewinding of de�nitions

is so persuasive we will not mention it in future; instead we only indicate the variety of

expansion theorem used. The next application is (EXP�) from which we obtain

SY S = a:(A

2

j RM j UM

1

j B)nI

where A

2

is b ack: ack:Ac(m

r

: ack:A) and UM

1

is �: UM + �:m

ub

: UM: By applying

the rule

((�:x

1

+ �:x

2

) j y)nA = �:(x

1

j y)nA + �:(x

2

j y)nA

we obtain

SY S = a:(�:S

1

+ �:S

2

)

where S

1

; S

2

denote (A

2

j RM j UM j B)nI; (A

2

j RM j m

ub

: UM j B)nI respectively.

1. We show S

1

= �:�:b: SY S

Applying (EXP) we obtain

S

1

= bnilc((m

r

: ack:A j RM j UM j B)nI):

The proof proceeds by �ve more applications of various forms of the expansion

theorem:

S

1

= �:(m

r

: ack:A j RM j UM j B)nI (EXP�)

= �:�:(ack:A j m

rb

: RM j UM j B)nI (EXP�)

= �:�:�:(ack:A j RM j UM j b: ack

b

:B)nI (EXP�)

= �:�:�:b:(ack:A j RM j UM j ack

b

:B)nI (EXP�)

= �:�:�:

where S

3

represents (ack:A j RM j UM j ack

b

:B)nI and S

4

the process (ack:A j

RM j UM j b: ack

b

:B)nI. One application of (EXP�) gives S

4

= b:S

3

so we now

have

S

2

= �:�:(b:�:S

3

+ �:b:S

3

):

On the other hand three applications of (EXP�) gives

S

3

= �:�:�:SY S:

which leads to

S

2

= �:�:(b:�:�:�:�: SY S + �:b:�:�:�: SY S):

The same � -reduction rule, �:x = �:�:x, reduces this to

S

2

= �:(b: SY S + �:b: SY S):

Another derived equation is x+ �:x = �:x which when applied gives the required

S

2

= �:b: SY S:

Combining these two sub{proofs we now have

SY S = a:(�:�:�:b: SY S + �:b: SY S)

Applying the equation (��2) we obtain the required

SY S = a:(�:�:b: SY S + �:b: SY S)

This completes the proof that SY S = SPEC and as we have seen it consists

of a large number of applications of the expansion theorem with periodic interventions

using � -reduction rules. The proof is no di�erent in style than corresponding proofs for

time-free processes. In other words we can apply the techniques originally developed for

standard process algebras to prove properties of at least some types of time dependent

systems. Performing such proofs is undoubtedly tedious but they are eminently suited to

mechanical assistance. Software systems have already been developed which help in the

development of these proofs, [Lin91, MV89], and they can easily be extended to handle

TPL. For example the above proof has been carried out by the system PAM, [Lin91].

6 Extensions

The language we have investigated is somewhat simple and is best viewed as the core of

more extensive and more useful timed languages. This core can be extended in many ways

and the choice is probably best made in the light of intended applications. Here we brie
y

sketch two possibilities; one concentrates on the passage of time and introduces more

constructs for the manipulation of the implicit time variable underlying the operational

semantics while the other adds urgent or insistent actions.

25

Manipulating Time

To make descriptions in the language more compact one can easily extend the syntax

with a variety of notational conventions; a large number may be found in [NS90]and here

we will examine a small selection. For any k � 0 �

k

:p can be viewed as a shorthand for

�: : : : �:p which means delay for k+1 time-cycles before continuing like p. More generally

we can de�ne a delay start operator, bpc

k

(q). Intuitively bpc

k

(q) behaves like p provided

p can perform an action within k clock cycles and otherwise, after the k

th

occurrence of

the clock tick, it behaves like q. As an example of its use consider

VM (= coin:VM

0

VM

0

(= b�

2

:tea:VM+ �

3

:co�ee:VMc

30

(VM)

After receiving a coin tea is ready in two clock cycles while co�ee takes three and after

thirty seconds the machine reverts to its original state and the coin is lost.

There are two ways of viewing the extension of the language with the operator b c

k

().

In the �rst the syntax of the language is actually extended by adding an in�nite set of

new operators, b c

k

(), one for each k � 0. The operational semantics of the language

must now be also extended to cover processes which use the new operators; this amounts

to adding extra clauses to the structural operational rules in Figure 2. The appropriate

rules, which re
ect our intuition, are

p

�

�! p

0

implies bpc

k

(q)

�

�! p

0

p 6

�

�! implies bpc

0

(q)

�

�! q

p

�

�! p

0

implies bpc

k+1

(q)

�

�! bp

0

c

k

(q)

One can show that with this extension one still obtains a regular t-labelled transition

system and therefore the characterisation of testing in terms of barbs also applies to this

language. However it is necessary to check that the behaviour preorder is preserved by

the new operator, i.e. p

<

�

t

p

0

; q

<

�

t

q

0

implies bpc

k

(q)

<

�

t

bp

0

c

k

(q

0

). Finally one must �nd

equations which capture entirely the behaviour of the new operator, i.e. equations which

when added to the set given in section four

The possible computations from S are of the form

S

start

�! G

�

�! : : :

�

�!

stop

�!

display!k

�! S

where k is the amount of lapsed time, i.e. the length of the sequence

�

�! : : :

�

�!.

A slightly more complicated form of timer may be de�ned by

W (= settime?t:S(t)

S(t) (= start:G(t)

G(t) (= b stop@u:S(t� u)c

t

(timeout:W)

Here W can receive a time, say 10, and then be started to become G(10). In this

state it awaits 10 clock cycles and then performs the timeout action. But while

waiting it can also be stopped. For example after 6 clock cycles it is in the state

b stop@u:S(10� (u+ 6))c

t

(timeout:W) where it can perform the action stop to the

state S(4). In this state it can be restarted at will and the remaining 4 clock cycles will

be counted down - unless it is stopped once more.

Recapitulating the language in question now looks like

p ::=
 j nil j P j �:p j j p + p j p j p

j p[S] j pnA;

We describe a simple distributed implementation of the vending machine using a

timer and a separate unit for brewing the drinks. The timer is de�ned as follows:

T (= settime?t:W (t)

W (t) (= b reset:T c

t�1

(T

0

)

T

0

(= timeout:T + reset:T

while the independent unit for brewing the tea and co�ee is given by:

C (= coin:settime!4:B

B (= �

2

:tea:F + �

3

:co�ee:F + timeout:C

F (= reset:C

Let the implementation be de�ned by

I (= (C j T)nA

where A is the set f settime; timeout; resetg. The behaviour of this system is slightly

di�erent than the other vending machines we have seen. In particular it has some

genuinely nondeterministic behaviour. After the fourth clock tick one may still obtain a

drink but this is not guaranteed. The complete behaviour is de�ned by

S (= coin:S

0

S

0

(= b�

2

: tea:S + �

3

: coffee:Sc

3

(tea:S + coffee:S + �:S)

We now outline a proof that I is an implementation of S, i.e. I '

+

S, by showing

how to transform one into the other using a proof system based on that in section four.

This involves a use of Unique Fixpoint Induction; we will show that

I = coin:I

0

I

0

= b�

2

: tea:I + �

3

: coffee:Ic

3

(tea:I + coffee:I + �:I)

for some term I

0

, from which the result will then follow. It is quite straightforward to

discover the required term I

0

. By two applications of an interleaving law we obtain

I = coin:�:(B j W (4))nA:

So let I

0

denote the term (B j W (4))nA. Using � -absorption we obtain

I = coin:I

0

and therefore it remains to show

I

0

= b�

2

: tea:I + �

3

: coffee:Ic(tea:I + coffee:I + �:I)

By expanding out recursive de�nitions and doing some rearrangements I

0

may be rewrit-

ten to a form susceptible to an expansion theorem:

((bnilc(�: tea:F + �

2

: coffee:F + timeout:C)) j (b reset:T c

3

(T

0

)))nA:

29

On applying the theorem we obtain

I

0

= �:I

1

where

I

1

is ((�: tea:F + �

2

: coffee:F + timeout:C) j (b reset:T c

2

(T

0

)))nA:

Repeating this procedure we obtain

Insistent Actions

Throughout these notes we have assumed that processes in our language are patient in

that they satisfy the condition

if p 6

�

�! then p

�

�!

which means that processes will wait inde�nitely until they can perform a synchroni-

sation. This gives a particular
avour to

where � is the chaining operator from [Hoa85]. In general X � Y is de�ned to be the

process (X[S

l

] j Y [S

r

])nf midg where mid

A The standard laws

The �rst set of equations deal with nondeterminism:

x+ x = x (+1)

x+ y = y + x (+2)

x+ (y + z) = (x+ y) + z (+3)

x+ nil = x (+4)

The next set deal with restriction and renaming:

nilnA = nil (res1) nil[S] = nil (ren1)

a:xnA = nil (res2) (�:x)[S] = S(�):x[S] (ren2)

if a or a 2 A

�:xnA = �:(xnA) (res3) (x+ y)[S] = x[S] + y[S] (ren3)

if � and � 62 A

(x+ y) n a = x n a+ y n a (res4)

The �nal set essentially says that all the operators apart from pre�xing by an external

action are strict.

�:
 =
 (
1)
 n a =
 (
4)

x+
 =
 (
2)
[S] =
 (
5)

x j
 =
 (
3)

When the language is extended with the time-out construct b c() we also need the

obvious laws:

b
c(x) =
 (
5)

(bxc(y))nA = bxnAc(ynA) (res5)

(bxc(y))[S] = bx[S]c(y[S]) (ren4)

33

References

[BB92] J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra. Technical

Report P9208, University of Amsterdam, 1992.

[BG88] G. Berry and G. Gonthier. The synchronous programming language ES-

TEREL: design, semantics, implementation. Report 842, INRIA, Centre

Sophia-Antipolis, Valbonne Cedex, 1988. To appear in Science of Computer

Programming.

[DH84] R. DeNicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 24:83{113, 1984.

[Gro90] J.F. Groote. Speci�cation and veri�cation of real time systems in ACP. Re-

port CS-R9015, CWI, Amsterdam, 1990. An extended abstract appeared in

L. Logrippo, R.L. Probert and H. Ural, editors, Proceedings 10

th

International

Symposium on Protocol Speci�cation, TestingR.L.abstola and

[MV89] S. Mauw and G.J. Veltink. An introduction to PSF

d

. In J. D��az and F. Orejas,

editors, TAPSOFT89, vol 2, volume 352 of Lecture Notes in Computer Science,

pages 272{285, 1989.

[NS90] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and

application. Technical Report RT-C26, Laboratoire de G�enie Informatique de

Grenoble, 1990. to appear in Information and Computation.

[Plo81] G.D. Plotkin. A structural approach to operational

