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Abstract

This paper presents a new characterization of the bisimulation congru-

ence and D{bisimulation equivalences of the �{calculus. The characteriza-

tion supports a bisimulation{like proof technique which avoids explicit case

analysis by taking a dynamic point of view of actions a process may per-

form, thus providing a new way of proving bisimulation congruence. The

semantic theory of the �{calculus is presented here without the notion of

�{equivalence.

1 Motivation

The �{calculus, introduced in [MPW92a], presents a model of concurrent computa-

tion based upon the notion of naming. It can be seen as an extension of the theory

of CCS [Mil89] (and other similar process algebras) in that names (references) are

the subject of communication. This introduces mobility into process algebras. Such

an extension allows us to clearly express many fundamental programming features

which could at best be described indirectly in CCS.

The theory of CCS has been quite successful for specifying and verifying con-

current systems. The success is due to a solid equality theory based on the notion

of bisimulation [Par81, Mil89]. Bisimulation has many nice properties. It induces

a congruence relation for CCS constructions, thus supporting compositionality. It

admits a very pleasant proof technique based on �xed point induction [Par81]. The

proof technique not only provides a means of establishing the equality theory but

also opens up a direct way of program veri�cation.
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Corresponding to the bisimulation equivalence in CCS, there are two main equal-

ities in the �{calculus: ground bisimulation equivalence and bisimulation congru-

ence. The notion of ground bisimulation is a natural generalization of that



and y, we can make a step forward by reducing the problem of proving P � Q into

two subproblems of proving P �

fx;yg

Q and Pfy=xg � Qfy=xg.

As a simple example let us prove the following

xj�y + xj�x � x:�y + �y:x+ xj�x

According to the above discussion, this can be reduced to proving both of the

following

xj�y + xj�x �

fx;yg

x:�y + �y:x+ xj�x

and

xj�x+ xj�x � x:�x+ �x:x+ xj�x

Now in the �rst equivalence, the distinction fx; yg requires that any pairs of dif-

ferent free names of the processes must be distinct under substitution. So the �rst

equivalence is guaranteed by xj�y + xj�x

:

� x:�y + �y:x + xj�x. A similar argument

concludes that the second equivalence is guaranteed by xj�x+xj�x

:

� x:�x+ �x:x+xj�x,

and now we can use the proof technique for

:

�. In the general case, we may have

to further reduce the subproblems before

:

� would guarantee D{bisimilarity of two

processes.

In fact here we are doing case analysis to divide the substitution set into smaller

subsets until

:

� can solve the subproblems. This cannot be a satisfactory proof

strategy in the general case. Because on many occasions, in order to conclude

congruence between processes, it is unnecessary to do case analysis until ground

bisimulation can come into play. The most obvious example is to prove P �

P for whatever complicated P . The aim of the paper is to introduce a proof

technique which allows us to do the necessary case analysis implicitly and to keep

it to minimum. A key point is to adopt a dynamic point of view of names by

introducing conditional commitment. The approach here is inspired by the work of

symbolic bisimulation of [HL92], where the idea of dividing a value space is used

in a proof technique to establish bisimulation equivalence between value passing

processes. In fact this paper applies the main idea in [HL92] while taking advantage

of the primitive structure of the �{calculus.

As another contribution, this paper demonstrates that the core of the theory

of �{calculus can be presented without using the notion of �{equivalence. Tra-

ditionally, �{equivalence, or \syntactic identity modulo �{conversion", plays a

very important role in theories in which variables can be bound. However it is

also well known that proofs involving this notion are very tedious. A desirable

approach is that the basic semantic results are worked out independent of this no-

tion. Of couse, afterwards the semantics

approach is that





that of �x[x]P is a bound name x. These are the two standard or normal forms

of concretion. Later we will see that any concretion can be normalized to one of

these forms. A negative pre�x �x:C now corresponds to the output pre�x in CCS,

which outputs the name part of C at port x and then continue with the process

part of C. In its standard form, an abstraction (x)P is in fact a function which

for each name y gives a process Pfy=xg, where we use the notation Pfy=xg to

describe the syntactic substitution of y for all free occurrences of x in P . Thus free

occurrences of x in P are bound by (x). Also we will see later that any abstraction

can be normalized to such a form. Now a positive pre�x x:(y)P corresponds to

the input pre�x in CCS, which receives a name z at port x and then behaves like

Pfz=yg. Finally the replication !P means P jP j : : : which plays the role of recursion.

The pure synchronization structures x:P; �x:P are not essential. They are included

for the bene�t of writing simple expressions in examples. Moreover �:0 is often

abbreviated to � (we have already used this abbreviation in the earlier examples).

To summarize whether a name is free or bound in an expression A, we give the

following de�nition.

De�nition 2.1 We write fn(A) for the set of free names of A | names which are

neither bound by abstraction nor by restriction. fn(A) is de�ned inductively on

the structure of A:

fn(0) = ;;

fn(�:P ) = fn(!P ) = fn(P )

fn(P + P

0

) = fn(P ) [ fn(P

0

)

fn(P jA) = fn(AjP ) = fn(P ) [ fn(A)

fn(x:A) = fn(�x:A) = fxg [ fn(A)

fn([x]P ) = fxg [ fn(P )

fn((x)P ) = fn(P )� fxg

fn(�xA) = fn(A)� fxg

Sometimes we will write fn(A;B) as an abbreviation for fn(A) [ fn(B).

2.2 Simultaneous Substitution

We have informally used notation Pfy=xg for the substitution of y for all free

occurrences of y in P . It need to be clari�ed what this substitution exactly means,

as there are possiblely bound names in a term, we have to be careful to avoid

name clash when making such substitutions. In this paper we take the approach

of simultaneous substitution introduced by Alan Stoughton [Sto88] for the lambda

calculus. The de�nition below is a specialized version of that in [Sto88] in the sense

that a name may only be substituted by another name in the �{calculus while a

variable may be substituted by a term in the lambda calculus.

We assume that there is a function fresh which for a given set N of names

will produce a name fresh(N) such that fresh(N) 62 N (or we can assume some
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proper ordering on N and take fresh(N) to be the smallest one which is not inN ).

Now, substitution and its application to agents is formally given by the following

de�nition.

De�nition 2.2 A substitution is a function from N to N . We use �; � to range

over substitutions, and post�x substitutions in application. For a given substitution

�, �fy

i

=x

i

g

1�i�n

denotes the following updated substitution of �:

x�fy

i

=x

i

g

1�i�n

=

8

<

:

y

i

if x = x

i

for 1 � i � n

x� otherwise

For two substitutions �; �, we write ��� for the composition of � with �, which is the

substitution such that for x 2 N ; x� �� = (x�)� (note since we post�x substitution

in application, the order of composition is the reverse of that in normal function

composition).

For any substitution � and name x, as a convention we let �x� = x� and �� = � ,

thus extending the domain and range of substitutions to the set of all actions. We

write A� for the agent obtained by applying the substitution � to agent A. It is

de�ned on the structure of A:

0� � 0

(�:A)� � ��:A�

(P + P

0

)� � P� + P

0

�

(P jA)� � P�jA�

(AjP )� � A�jP�

(!P )� � !P�

(�xA)� � �zA�fz=xg z = fresh(fy� j y 2 fn(A)� fxgg)

((x)P )� � (z)P�fz=xg z = fresh(fy� j y 2 fn(P )� fxgg)

([x]P )� � [x�]P�

In the above, z is chosen to avoid name clash by using fresh.

As demonstrated in [Sto88], this simultaneous substitution is easier to work with

than standard single substitution. The e�ect of single substitution of x for y in P

is now obtained by applying simultaneous substitution �fx=yg on P , where � is the

identity map. So, from now on, we will write P�fx=yg for single substitution instead

of Pfx=yg. The following conventions are adopted to avoid ambiguity without

writing too many brackets. We assume that substitution (post�xed) has the highest

precedence. Pre�xed operators [x]; (x); �x; !; �: have higher precedence than in�xed

operators + and j.
jfor



Lemma 2.3 Let A be an agent, �; � be two substitutions. If � and � agree on

fn(A), that is 8x 2 fn(A):x�



2.3 Normalization and Pseudo{Application

We have said earlier that abstractions and concretions have certain standard (nor-

mal) forms. Now we de�ne the standard form of an abstraction and that of a

concretion. The idea to deal with standard forms �rst appeared in [Mil91].

De�nition 2.7 An abstraction is in normal form if it is of form (x)P . For any

abstraction F , its normal form norma(F ) is de�ned inductively on the structure of

F as follows:

1. norma((x)P ) � (x)P ,

2. if norma(F ) � (y)P , then

norma(F jQ) � (z)(P�fz=ygjQ) norma(QjF ) � (z)(QjP�fz=yg)

norma(�xF ) �

8

<

:

(y)P x 62 fn(F )

(x)�yP �fx=y; y=xg x 2 fn(F )

where z = fresh(fn(F;Q)).

In clause 2. above, it seems that (y)�xP would be a simpler de�nition for norma(�xF )

when x 2 fn(F ). Our de�nition swaps x; y in (y)�xP , which obviously does not

change the semantics of the abstraction. However, our choice here is essential for

the equivalences in the following Lemma 2.10. If we use the simpler version, those

equivalences will only hold for in the sense of �{equivalence.

De�nition 2.8 A concretion is in normal form if it is of form [x]P or �x[x]P . For

any concretion C, its normal form normc(C) is de�ned inductively on the structure

of C as follows:

1. normc([x]P ) � [x]P ,

2. if normc(C) � [y]P , then

normc(CjQ) � [y](P jQ) normc(QjC) � [y](QjP )

normc(�xC) �

8

<

:

�x[x]P x = y

[y]�xP x 6= y

3. if normc(C) � �y[y]P , then

normc(CjQ) � �z[z](P�fz=ygjQ) normc(QjC) � �z[z](QjP�fz=yg)

normc(�xC) �

8

<

:

�y[y]P x 62 fn(C)

�x[x]�yP �fx=y; y=xg x 2 fn(C)

where z = fresh(fn(C;Q)).
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Again we swap the places of x; y in clause 3. in order to be able to prove the

following Lemma 2.10.

Lemma 2.9 For any abstraction F , concretion C the following hold

fn(F ) = fn(norma(F )) fn(C) = fn(normc(C))

Proof It is easy by induction on the structure of F and C. 2

Lemma 2.10 For any abstraction F , concretion C, substitution � the following

hold

norma(F�) � (norma(F ))� normc(C�) � (normc(C))�

Proof Here we only prove the abstraction part. The proof is similar for the con-

cretion part. It is proved by induction on the structure of F . The basic case is

that F is in normal form, so norma(F ) � F . In this case F� is also in normal

form. Thus norma(F�) � F� � (norma(F ))�. For the inductive step suppose

norma(F�) � (norma(F ))� for any � we will show that

norma((�xF )�) � (norma(�xF ))�

norma((F jQ)�) � (norma(F jQ))�

norma((QjF )�) � (norma(QjF ))�

We only show the �rst equivalence. Let norma(F ) � (y)P . By the induction

hypothesis, for a given name z

norma(F�fz=xg) � (norma(F ))�fz=xg � ((y)P )�fz=xg � (w)P (�fz=xg)fw=yg

where w = fresh(fn(((y)P )�fz=xg)) = fresh(fn(F�fz=xg)). So

norma((�xF )�)

� norma(�zF�fz=xg)

�

8

<

:

(w)P (�fz=xg)fw=yg z 62 fn(F�fz=xg)

(z)�wP (�fz=xg)fw=yg � �fw=z; z=wg z 2 fn(F�fz=xg)

where z = fresh(fn((�xF )�)), w = fresh(fn(F�fz=xg)). It is clear that z 2

fn(F�fz=xg) implies x 6= y, so in this case norma((�xF )�) � (z)�wP�fw=x; z=yg.

We now need to discuss the following two cases.

The �rst case is x 62 fn(F ). In this case

(norma(�xF ))� � ((y)P )� � (w

0

)P�fw

0

=yg

where w

0

= fresh(fn(((y)P )�)) = fresh(fn(F�)). Because x 62 fn(F ) implies

fn(F�) = fn(F�fz=xg), so w = w

0

in this case. Moreover, in this case either

x 62 fn(P ) or x = y, each of which guarantees P (�fz=xg)fw=yg � Pfw=yg. So

norma((�xF )�) � (norma(�xF ))�.
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The second case is x 2 fn(F ). In this case x 6= y

(norma(�xF ))�

� ((x)�yP �fx=y; y=xg)�

� (z

0

)(�yP �fx=y; y=xg)�fz

0

=xg

� (z

0

)�w

0

P�fx=y; y=xg � �fz

0

=x;w

0

=yg

� (z

0

)�w

0

P�fw

0

=x; z

0

=yg

=y





and the other wants to receive a name on the same name prot. The result of

communication may \twist" the parallel components because of the de�nition of

pseudo{application. We can avoid this by introducing another pseudo{application

operator. But this is unnecessary since in any case j will turn out to be a symmetric

operator. Restriction �x disallows any communication on the name x. In the rule

name(�) gives a singleton set fxg when � is x or �x and gives ; when � is � . Note

that in the rule, the identity substitution � seems to be unnecessary. However �

may change bound names. Thus although A and A� are �-equivalent they are not

necessaryly identical. Use of � here ensures that Rest will not spoil the following

Lemma 2.14.

Act

�:A � �:A

Sum

P � �:A

P +Q � �:A

Q � �:A

P +Q � �:A

Intl

P � �:A

P jQ � �:AjQ

Q � �:A

P jQ � �:P jA

Sync

P � x:P

0

Q � �x:Q

0

P jQ � �:P

0

jQ

0

P � �x:P

0

Q � x:Q

0

P jQ � �:P

0

jQ

0

Com

P � x:F Q � �x:C

P jQ � �:F � C

P � �x:C Q � x:F

P jQ � �:F � C

Rest

P � �:A

�xP � �:(�xA)�

x 62 name(�)

Rec

P j !P � �:A

!P � �:A

Figure 2: Inference Rules for Commitments

Lemma 2.13 If P � �:A then name(�) � fn(P ) and fn(A) � fn(P ).

Proof



an example here we check this for Rest. Suppose the property holds for the premiss,

that is to say

name(�) � fn(P ) and fn(A) � fn(P )

we have to show that the property also holds for the conclusion, that is to say

name(�) � fn(�xP ) and fn(�xA) � fn(�xP )

This immediately follows from the side condition that x 62 name(�). 2

Lemma 2.14 If P � �:A then P� � ��:A� for any substitution �.

Proof Again we only need to show that all the rules in Figure 2



equivalent concretions should have equivalent name parts as well as equivalent

process parts. Every thing is quite straightforward until we compare two concretions

with bound name parts. In this case what particular bound names are used is not

important. What is important is that each of them is always di�erent from any free

name. Thus in order for two such concretions to be equivalent, it would be su�cient

for the process parts to be equivalent whenever the bound names are replaced by

any name di�erent from the free names occuring in the concretions. We can de�ne

such an equivalence by the standard notion of bisimulation.

De�nition 2.15 A strong simulation S is a binary relation between agents such

that for all (A;B) 2 S, one of the following must hold:

1. (A;B) is a pair of processes (P;Q) such that whenever P � �:A

0

then

Q � �:B

0

for some (A

0

; B

0

) 2 S,

2. norma(A) � (x)P; norma(B) � (y)Q; and for every name z 2 N

(P�fz=xg; Q�fz=yg) 2 S

3. normc(A) � [x]P; normc(B) � [y]Q;x= y; and

(P;Q) 2 S

4. normc(A) � �x[x]P; normc(B) � �y[y]Q;
y

for the



De�nition 2.17 Two agents A;B are strongly congruent, written A � B, if

A�

:

� B� for all substitutions �.

Theorem 2.18 � is a congruence.

Proof Along the lines in [MPW92a]. 2

Theorem 2.19







3 Symbolic D{Bisimulations

This section presents the proof technique for the bisimulation congruence. We in-

troduce a notion of symbolic D{bisimulation supported by a proof technique. We

then show that the symbolic D{bisimulation coincides with D{bisimulation. Thus

the proof technique can be used to show D{bisimulation equivalence of processes,

with bisimulation congruence as a special case. The symbolic D{bisimulation in-

troduced here is inspired by symbolic bisimulation introduced in [HL92].

The operational semantics introduced in the last section treated free names

as constants. This can be seen through the following example. Consider P jQ

when P � x:F and Q � �y:C. If x and y are di�erent names, then the rules

of � cannot infer any communication between the components (assuming that

the components have no other actions). Thus the possibility of communication

between these two components when x and y are substituted by the same name

is not considered by the relation �. When names are subject to substitution, it

is not su�cient to consider only the � relation. To adjust this constant point

of view of free names, we introduce conditional commitment. We write P �

�

�:A for conditional commitment which means a commitment under substitution �.

Conditional commitments are de�ned by the rules in Figure 3. The rules basically

say that conditional commitments are caused by two complementary commitments

of parallel components, and that they propagate over the constructions. In the side

condition of C-Rest, x is � clean means 8y 2 N :x = y� , x = y. This notation is

taken from [Jef92].

Lemma 3.1 If P �

�

�:A then � = �fx=yg for some x; y 2 N . Moreover, if

� = �fx=yg where x 6= y then � = � .

Proof Easy to check that all the rules in Figure 3 preserve this property. Notice

that � = �fx=xg for any x 2 N . 2

This lemma shows checking for the side condition in rule C-Rest is not di�cult

at all; the relation �

�

thus de�ned is not much more complex than �. Now we

show some desired properties of this relation.

Lemma 3.2 If P �

�

�:A then P� � ��:A�.

Proof This is to show a property about the relation �

�

generated by the rules in

Figure 3, we only need to show that all the rules preserve this property. Here we

only show this for C-Com and C-Rest.

For the rule

P �



C-Act

�:A �

�

�:A

C-Sum

P �

�

�:A

P +Q �

�

�:A

Q �

�

�:A

P +Q �

�

�:A

C-Intl

P �

�

�:A

P jQ �

�

�:AjQ

Q �

�

�:A

P jQ �

�

�:P jA

C-Sync

P �

�

x:P

0

Q �

�

�y:Q

0

P jQ �

�fx=yg

�:P

0

jQ

0

P �

�

�y:P

0

Q �

�

x:Q

0

P jQ �

�fx=yg

�:P

0

jQ

0

C-Com

P �

�

x:F Q �

�

�y:C

P jQ �

�fx=yg

�:F � C

P �

�

�y:C Q �

�

x:F

P jQ �

�fx=yg

�:F � C

C-Rest

P �

�

�:A

�xP �

�

�:(�xA)�

x 62 name(�), x is � clean

C-Rec

P j !P �

�

�:A

!P �

�

�:A

Figure 3:



with A � A

0

�, � = ��, and for some �

0

, � = � � �

0

.

Proof The direction \if" follows directly from Lemma 3.2 and Lemma 2.14. The

other direction can be proved by induction on the depth of inference and a case

analysis of the last rule applied. We only show a key case here.

If (P jQ)� � �:A, then there are the following possibilities:

1. P� � �:B;A � BjQ�.

2. Q� � �:B;A � P�jB.

3. P� � x:P

0

; Q� � �x:Q

0

; A � P

0

jQ

0

.

4. P� � �x:P

0

; Q� � x:Q

0

; A � P

0

jQ

0

.

5. P� � x:F;Q� � �x:C;A � F � C.

6. P� � �x:C;Q� � x:F;A � F � C.

In the �rst case, by the induction hypothesis, P �

�

�:B

0

with � = ��;B � B

0

�,

and for some �

0

, � = � � �

0

. So P jQ �

�

�:(B

0

jQ) by C-Intl, and moreover we have

BjQ� � B

0

�jQ� � (B

0

jQ)�.

In the �fth case, by the induction hypothesis,

�with

B � � � BQTj
8f
9 Tf
 Td
f
9 Tf
Tf
2.28.8 0 Td
[(b)1000.6
(B)Tj
/R23924 Tf
7.2 0 Td
(,)Tj
-417.84 14.6398 Td
(and)Tj
23.0398 0 Td
(for)Tj
18.2398 0 Td
(some)Tj
/6
/R12.24 Tf
29.5199 0 Td
(�)Tj
/R24Td
(�)Tj
/R28 0.24 Tf
2.64023 4.31992 Td
(� Tf
2.88008 4.31992 63199)Tj
/R128 0.24 Tf
7.43984 0 63199= � bQ��

0� y.5199 0 Td
(�)Tj
/Td
(,)Tj
/R12[
 Td
f
9 Tf
Tf
2.(In1.36 0na
2.28.8 0 Td
[(b)10007R239 0.24 Tf
y.5199 0 Td
(�)Tj
/6
/R12.24 Tf
4 Tf
4
(�)Tj(Lemmawi]TJ28.8 0 Td
[(b)10005inference)Tj
4j
/R159 .3203Q)Tj
/R239 0.24 Tf
70� �.5199 0 Td
(�)Tj
/6
199Q4.56016 5 Td
(4 Tf
)]TJ
38.21.36 03.1.28.8 0 Td
[(b)10007R28801 0 Td
[�I0 TdQ

0� �I0 TdQ



can match P � �:(xj�y) indirectly by using the fact that xj�y �

fx;yg

x:�y + �y:x and

xj�x � xj�x. In the following, we will introduce a relation �

D

S

to express this indirect

match, where D



so whenever x; y 2 fn(A;P ) and x 6= y then (x; y) 2 D. Because � respects D,

so in this case P � �:B for some B with B

:

� A. We can show that for this B,

(A;D;B) 2 S, that is A �

D

B, by the following series of implications:

A

:

� B ) A �

N

B ) A �

Ndfn(A;B)

B ) A �

Ndfn(A;P )

B ) A �

D

B

where the last two implications follow from Ndfn(A;B) � Ndfn(A;P ) � D. So

in this case P �

D

S

�:A.

Now suppose x; y 2 fn(A;P ); x 6= y, and (x; y) 62 D. It is easy to see that the

following holds:

1. for all � j= D[fx; yg, there exists B such that P� � ��:B and B

:

� A�, and

2. for all � j= D such that x� = y�, there exists B such that P� � ��:B and

B

:

� A�.

Thus by the induction hypothesis the �rst implies

P �

D[f(x;y);(y;x)g

S

�:A

The second implies for all � j= D�fy=xg, there exists B such that

P�fy=xg� � ��:B and B

:

� A�fy=xg�

and by the induction hypothesis this implies

P�fy=xg �

D�fy=xg

S

��fy=xg:A�fy=xg

So by the de�nition of �

S

, P �

D

S

�:A. 2

Now we can give the de�nition of symbolic D{bisimulation.

De�nition 3.7 A symbolic simulation, S, is a set of triples of the form (A;D;B)

where A;B are agents, D is a distinction, such that whenever (A;D;B) 2 S, one

of the following must hold:

1. (A;B) is a pair of processes (P;Q) such that whenever P �

�

�:A

0

for � j= D

then Q� �

D�

S

��:A

0

�,

2. norma(A) � (x)P; norma(B) � (y)Q; and for some z 62 fn(A;B)

(P�fz=xg;Dnz;Q�fz=yg) 2 S

3. normc(A) � [x]P; normc(B) � [y]Q;x= y; and

(P;D;Q) 2 S

4. normc(A) � �x[x]P; normc(B) � �y[y]Q; and for some z 62 fn(A;B)

(P�fz=xg;D [ fzg � fn(A;B) [ fn(A;B)� fzg; Q�fz=yg) 2 S
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A set S of triples is a symbolic bisimulation if both S and its inverse S

�

are symbolic

simulations. Two agents A;B are said to be symbolicly D{bisimilar if there exists

a symbolic bisimulation S such that (A;D;B) 2 S.

In the above de�nition, we use a set of triples instead of a family of D{indexed

sets in order to avoid dealing with set of sets. Theorem 3.6 suggests that Q �

D

S

�:A

0

matchs P � �:A

0

in order that P �

D

Q, hence clause 1. In clause 2. z should

be viewed as a place holder for any name. A simpler solution would be to choose

a z which does not appear free in A;B; and D. However sometimes we may have

trouble in choosing such a z: consider (x)0 �

N

(y)0, we cannot �nd z 62 N .

However, the set of free names of A and B is always �nite and any name which

appears in D but does not appear free in either A or B is immaterial (Lemma

2.22). With these consideration, clause 2. seems to be workable. In clause 4. z

is intended to be a common internal name which takes the place of x in P and y

in Q. Thus, not only z should be chosen di�erent from all free names in A and B

but also this di�erence should be remembered in the subsequent reasoning. This is

achieved by extending the distinction with the information that z is distinct from

all free names in A and B.

Later we will prove that symbolicD-bisimulation coincides with D-bisimulation.

The de�nition of symbolic D-bisimulation is based on the commitments of the

processes. Thus it provides us a bisimulation like technique to proveD-bisimulation:

in order to prove P �

D

Q, trying to establish a symbolic D-bisimulation S such

that (P;D;Q) 2 S. Take the following two processes as given in an earlier example,

P � �:(xj�y) + �:(x:�y + �y:x) + �:(xj�x)

Q � �:(x:�y + �y:x) + �:(xj�x)

we can prove that P � Q by verifying that the following relation B is a symbolic

bisimulation

f(P; ;; Q); (xj�y; fx; yg; x:�y+ �y:x); (0j�y; fx; yg; �y); (xj0; fx; yg; x); (0j0; fx; yg;0)g[ I

where I = f(A;D;A) j agent A and distinction Dg. In verifying that the above is

indeed a symbolic bisimulation, an intersting case is to match P � �:(xj�y) with

Q �

;

B

�:(xj�y) which is the consequence of Q�fy=xg �

;

B

��fy=xg:(xj�y)�fy=xg and

Q �

fx;yg

B

�:(xj�y).

In the rest of this section we will prove that the symbolicD{bisimulation indeed

characterizes D{bisimulation equivalence.

Theorem 3.8 If A and B are D{bisimilar, then they are symbolicly D{bisimilar.

Proof Let

S = f(A;D;B) jA �

D

Bg

Because �

D

is symmetric, in order to show S is a symbolic bisimulation it is

su�cient to show that S is a symbolic simulation. Take (A;D;B) 2 S, that is to

say A �

D

B. Because � j= D, so A

:

� B. Thus there are the following four cases.
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First consider the case that (A;B) is a pair of processes (P;Q). We will show

that whenever P �

�

�:A

0

for � j= D then Q� �

D�

S

��:A

0

�. For that, suppose

P �

�

�:A

0

and � j= D, by Theorem 3.6, we show that for all � j= D� there

exists B such that (Q�)� � (��)�:B and B

:

� (A

0

�)�. This is guaranteed by the

following:

1. � j= D� implies � � � j= D, and thus

2. P� � �

:

� Q� � �, and moreover

3. P �

�

�:A

0

implies P� � ��:A

0

�



P �

�

�:A

00

, by the de�nition of �

�

, Q must satisfy Q� �

D�

S

��:A

00

�. Because

� � �

0

= � j= D, it is not di�cult to see that �

0

j= D�. Then by Lemma 3.5, there

exist D

0

; B

00

such that Q� � �

0

� �� � �

0

:B

00

�

0

; �

0

j= D

0

and (A

00

�;D

0

; B

00

) 2 S. So we

�nd Q� � �:B

00

�

0

with (A

00

� � �

0

; B

00

�

0

) 2 B.

If norma(A) � (x)P; norma(B) � (y)Q, then norma(A�) � (u)P�fu=xg and

norma(B�) � (v)Q�fv=yg by Lemma 2.10 and the de�nition of substitution, where

u = fresh(fz� j z 2 fn(P )�fxgg) and v = fresh(fz� j z 2 fn(Q)�fygg). In this

case we have to show that for any name w 2 N

((P�fu=xg)�fw=ug; (Q�fv=yg)�fw=vg) 2 B

Now because (A;D;B) 2 S and S is a symbolic bisimulation, so

(P�fz=xg;Dnz;Q�fz=yg) 2 S

for some z 62 fn(A;B). For � j= D, it must be the case that �fw=zg j= Dnz. Thus

((P�fz=xg)�fw=zg; (Q�fz=yg)�fw=zg) 2 B.

If normc(A) � [x]P; normc(B) � [x]Q, then by Lemma 2.10

normc(A�) � [x�]P� and norma(B�) � [x�]Q�. Because (A;D;B) 2 S, thus

(P;D;Q) 2 S. In this case obviously (P�;Q�) 2 B.

If normc(A) � �x[x]P; normc(B) � �y[y]Q, then normc(A�) � �u[u]P�fu=xg

and normc(B�) � �v[v]Q�fv=yg by Lemma 2.10 and the de�nition of substitution,

where u = fresh(fz� j z 2 fn(P )� fxgg) and v = fresh(fz� j z 2 fn(Q)� fygg).

In this case we have to show that for some w 62 fn(A;B)

((P�fu=xg)�fw=ug; (Q�fv=yg)�fw=vg) 2 B

Because (A;D;B) 2 S, it follows that

(P�fz=xg;D [ fzg � fn(A;B) [ fn(A;B)� fzg; Q�fz=yg) 2 S

by the de�nition of symbolic D{bisimulation. Now let w 62 fx� j x 2 fn(A;B)g,

then it is clear that �fw=zg j= D [ fzg � fn(A;B) [ fn(A;B) � fzg. Thus

((P�fz=xg)�fw=zg; (Q�fz=yg)�fw=zg) 2 S. 2

4 Conclusion and Related Work

This paper presents a new characterization of the bisimulation congruence and D{

bisimulation equivalences of the �{calculus. The new characterization supports a

bisimulation like proof technique which avoids explicit case analysis, thus providing

a new way of proving bisimulation congruence.

The proof technique resembles the symbolic bisimulation for value passing pro-

cesses introduced by Hennessy and Lin [HL92]. In their work, symbolic bisimu-

lation of value passing processes is de�ned in terms of symbolic transition of the

form T

b;a

�! T

0

, where T; T

0

are process terms (may have free variables), a is some

action, b is a boolean expression. This can be read as \under condition b, T may
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perform a and ivolve into T

0

".
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