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� Completeness. We must show that contextual equivalence implies weak bisimilarity. To

do this we show that each transition ===

γ
) corresponds to a small piece of context Cγ[t]

such that t ===

γ
) v iff Cγ[t]) (v;true). (We call such lts’s contextual: the notion that

transition labels should correspond to small contexts appears to be folklore, and has only

recently been investigated formally by Sewell [20].) This formal relationship between

labelled observations and reduction in contexts yields completeness because non-bisimilar

terms have a distinguishing trace of labelled actions, yielding a distinguishing context.

� For the converse, soundness, we must show that bisimilarity implies contextual equiva-

lence, for which it is sufficient to demonstrate that bisimilarity is a congruence.

We note that our approach to characterising contextual equivalence is already in sharp contrast to

Pitts and Stark. They propose logical relations as an operational proof technique for establishing

contextual equivalence of ν-calculus terms. The logical relation can easily be construed as a

form of bisimulation on an lts, but the labels which would have to be used are not contextual—

this compromises completeness in order to obtain a direct proof of soundness for their technique.

In the case of the λ







A (strong) bisimulation is a (strong) simulation whose inverse is a simulation.

Let � be the largest bisimulation, and let � be the largest strong bisimulation.

We can extend these relations from closed terms to open terms by closing with any appropri-

ately typed values. A type-indexed relation R on closed terms can be extended to a relation R� on

open terms:

Γ � t R� t 0 : σ
iff for all ` [v=x] : Γ we have:

� (t[v=x]) R (t 0[v=x]) : σ

where we write ` [v=x] : (x : σ) whenever ` v : σ.

2.4 Example

Let not be defined:

not
def

= λx : bool : if x then false else true

then one sample reduction of not is:

not ===

copy

) (not;not)

====

l:@true

) (not(true);not)

===

τ
) (false;not)

=====

r:@false

) (false;not(false))

===

τ
) (false;true)

====

l:false

) (();true)

===

r:true

) ((); ())

showing how not evaluates when applied to true or false.

2.5 Completeness

In this section, we shall show that bisimulation is complete, that is:

if t �ctx t 0 then t �� t 0

First we observe that the λ-calculus is deterministic and normalizing, and so bisimulation and

trace equivalence coincide.

We then show that contextual equivalence implies trace equivalence by constructing a context

Cγ for each sequence of labels γ so that the context induces reductions for each label:

Lemma 2.1 For every sequence γ of transition labels there is a context Cγ such that:

( ` t : σ) ===

γ
) ) ( ` v : σ0

) iff ( ` Cγ[t] : (σ0

�bool))) ( ` (v;true) : (σ0

�bool))



C
true

[t]
def

= let x = t in (x;x)

C
false

[t]
def

= let x = t in (x;not(x))

C@v[t]
def

= let x = t(v) in (x;true)

C
copy

[t]
def

= let x = t in ((x;x);true)

C
discard

[t]
def

= let x = t in (();true)

C
l:γ[t]

def

= let (x1;x2) = t

in let (x01;x
0

2) = Cγ[x1] in ((x01;x2);x
0

2)

C
r:γ[t]

def

= let (x1;x2) = t

in let (x01;x
0

2) = Cγ[x2] in ((x1;x
0

1);x
0

2)

We then prove that Cγ has the required property, by induction on γ. This is straightforward, as an

example we demonstrate the case where the label is l:γ.
Suppose t ===

l:γ
) ) v. We know that t must converge to a value, and by construction, we

know that this value must be a pair, (v1;v2) say, such that v1 ===

γ
) ) v0, where v = (v0;v2).

Now,

C
l:γ[t]) let (x01;x

0

2) = Cγ[v1] in ((x01;v2);x
0

2):

By induction we know that Cγ[v1]) (v0;true), thus we have

let (x01;x
0

2) = Cγ[v1] in ((x01;v2);x
0

2)) ((v0;v2);true)

which is to say C
l:γ[t]) (v;true).

Conversely, suppose that C
l:γ[t] ) (v;true). By inspection of the context we note that

t ) (v1;v2) for some values and Cγ[v1]) (v0;true) such that v is (v0;v2). From this we know by

induction that v1 ===

γ
) ) v0, whence t ) (v1;v2) ===

l:γ
) ((v0;v2);true) as required.

For a sequence of labels, we define:

Cε[t]
def

= let x = t in (x;true)

Cγ;γ0[t]
def

= let (x1;x2) = Cγ[t]

in let (x01;x
0

2) = Cγ0 [x1] in (x01;x2^ x02)

The result follows by induction on the length of γ. 2

Theorem 2.2 (completeness for λ-calculus) If Γ � t �ctx t 0 : σ then Γ � t �� t 0 : σ.

Proof: It suffices to show the result for closed terms. Let γ be a trace of t:

( ` t : σ) ===

γ
)

so ( ` t : σ) ===

γ
) ) ( ` v : σ0

) (λ-calculus is terminating)

so ( ` Cγ[t] : (σ0

�bool))) ( ` (v;true) : (σ0

�bool)) (Lemma 2.1)

so ( ` snd (Cγ[t]) : bool)) ( ` true : bool) (Defn of snd)

so ( ` snd (Cγ[t
0

]) : bool)) ( ` true : bool) (t �ctx t 0)

so ( ` Cγ[t
0

] : (σ0

�bool))) ( ` (v0;true) : (σ0

�bool)) (Defn of snd)

so ( ` t 0 : σ) ===

γ
) ) ( ` v0 : σ0

) (Lemma 2.1)
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Similarly, any trace of t 0 is a trace of t, so the terms are trace equivalent. Since the λ-calculus is

deterministic, trace equivalence and bisimulation coincide, so t � t 0. 2

2.6 Soundness

In this section, we shall show that bisimulation is sound, that is:

if t �� t 0 then t �ctx t 0

This result is immediate from the result that bisimulation is a congruence, for which we adopt

Howe’s technique [10], following Gordon [6].

For any type-indexed relation R, let bR be defined such that for each type rule in the language:

Γ ` t : σ
Γ ` op(t) : σ

we have:
Γ � t R t 0 : σ

Γ � op(t) bR op(t
0

) : σ
For any type-indexed relation R, let R� be defined:

t1 cR
� t2 R� t3

t1 R� t3

Howe’s proof depends first on showing that �� is



2.7 Comments

The astute reader will notice that the copy and discard transitions are redundant in this setting.

In fact, it is a well known property of pure functional languages that ‘operational extensionality’

holds, that is, contextual equivalence can be verified by using applicative contexts alone. This

does certainly not hold true of the extensions to the λ-calculus which we will consider later in

this paper where operational extensionality fails.

In a similar vein, we notice that the use of l: and r: tags rather than Gordon’s fst and

snd transitions is also unnecessary here because pairing forms a product on values. In later

sections, because of the presence of side-effects, the pairing operator is no longer a product, but

is symmetric monoidal.

It is an important feature of the transition systems being used here, and also those of [6, 2]

that they are applicative in nature. That is, any arbitrary pieces of code being carried in the label

is always of lower order type than the term under scrutiny.

3 ν-calculus

We now extend the λ-calculus with unique name generation and equality testing, in order to

investigate Pitts and Stark’s [13] ν-calculus.

Pitts and Stark have demonstrated that finding a sound and complete semantics for the ν-

calculus is a difficult open problem. They provide a sound (but incomplete) semantics using

logical relations. In this section, we provide an ‘upper bound’ to complement their ‘lower bound’

by presenting a bisimulation which is complete (but only sound up to first-order). We observe that

our complete bisimulation provides a more investigative proof method for establishing contextual

inequivalence which allows one to construct distinguishing contexts in a piecemeal fashion. This

useful feature of the semantics avoids the need to build these, sometimes elaborate, contexts

completely by making much of the construction automatic.

3.1 Syntax and type rules

Extend the grammar of types with:

σ ::= � � � j name

Extend the grammar of values with:

v ::= � � � j n

Extend the grammar of terms with:

t ::= � � � j νn : t j v = v

Extend the type judgements Γ` t : σ to include a name context ∆ of the form n1; :::;nn for distinct

ni, so judgements are now of the form Γ;∆ ` t : σ. The type rules for the new terms are:

Γ;∆;n;∆0

` n : name

Γ;∆;n ` t : σ
Γ;∆ ` νn : t : σ

Γ;∆ ` v : name Γ;∆ ` v0 : name

Γ;∆ ` v = v0 : bool

The other rules do not change the name context.
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3.2 Reduction semantics

Terms no longer reduce to values, instead they now reduce to prevalues of the form:

p ::= νn : v

Extend the reduction relation with (when n 6= n0):

n = n
τ
-

true

n = n0

τ
-

false

Extend the grammar of evaluation contexts by:

E ::= � � � j νn : E

Replace the let-β reduction rule by:

let x = νn : v in t
τ
- νn : t[v=x]

where we α-convert νn : v if necessary to ensure that none of the free names in t are captured. It is

in this rule that scope extrusion of the static name binder occurs. There is an obvious translation

from Pitts and Stark’s ν-calculus into ours (theirs does not include pairing), and it is routine to

show that this translation is adequate.

The definition of contextual equivalence remains the same, except that the results of a test can

include some private names: t �ctx t 0 whenever for all closing contexts C of type bool, we have

C [t]) νn : true iff C [t 0]) νn0

: true.

3.3 Labelled transition system semantics

We can no longer define the lts semantics as judgements ( ` v : σ)

γ
-

( ` t



and free names:

f n(n) = fng f n(@v) = f n(v) f n(γ;γ0) = f n(γ)[ f n(γ0)nbn(γ)

A public name can be announced:

(∆ ` n : name)
n
-

(∆ ` () : unit)

The context νn : � is an observation context:

(∆;n ` p : σ)

γ
-

(∆;n;∆0

` t : σ0

)

(∆ ` νn : p : σ)

γ
-

(∆;∆0

` νn : t : σ0

)

[n not in γ]



These are not bisimilar because the first term has the reduction:

νn : λx : unit : n ===

copy

) νn : (λx : unit : n;λx : unit : n)

===

l:@()

) ) νn : (n;λx : unit : n)

===

r:@()

) ) νn : (n;n)

===

l:νn
) (();n)

===

r:n
) ((); ())

which the second term can only match:

λx : unit : νn : n ===

copy

) (λx : unit : νn : n;λx : unit : νn : n)

===

l:@()

) ) (νn : n;λx : unit : νn : n)

===

r:@()

) ) νn : (n;νn0

: n0

)

===

l:νn
) νn0

: (();n0

)

At this point the term cannot match the last ==

r:n
) transition performed by the first term because

its only move is:

νn0

: (();n0

) ===

r:νn0

) ((); ())

Note that this example relies crucially on the use of copy, l:γ and



using some syntax sugar such as:

let n = t in t 0
def

= let x = t in (t 0[x=n])

The result then follows by induction on γ. 2

Theorem 3.2 (completeness for ν-calculus) If Γ;∆ � t �ctx t 0 : σ then Γ;∆ � t �� t 0 : σ.

3.6 Partial soundness

It is a fairly simple matter to show that bisimulation is sound for the ν-calculus at first order, by



but in order to complete the diagram we need to know that �� is



despite the fact that some ‘foreign’ code f is being applied to n. By adding assignment, f can

leak the secret name n to the environment.

We believe that any form of side-effect which allows secrets to leak like this will help to make

bisimulation sound and complete, for example call-cc, communication channels or imperative ob-

jects. Although the extent to which any additional features are required is as yet unclear. We have

chosen to investigate global assignment as it is the simplest addition which is still deterministic

and terminating.

4.1 Syntax and type rules

Extend the grammar of terms by:

t ::= � � � j r := v : t j ?r

where r ranges over an infinite set of references. These operations allow a name to be written to,

or read from, a reference. We do not introduce references themselves as values and thus have no

need for introducing a type of references.

We introduce a use-def type system to ensure that all references are written to before they



(where the bound names in d do not clash with free names in t 0) and:

t1V t2
E[t1]V E[t2]

Let � be the least equivalence generated byV.

Extend the evaluation contexts to include assignment:

E ::= � � � j r := v : E

Extend the reduction semantics with a rule for dereferencing:

r := n : ?r
τ
- r := n : n

Since we have modified the prevalues, we need to modify the let-β rule:

let x = d : v in t
τ
- d : t[v=x]

Add a structural equivalence rule:

t1 � t2 t2
τ
- t3 t3 � t4

t1
τ
- t4

The definition of contextual equivalence remains the same, except that the results of a test can

include some assignments: t1 �ctx t2 whenever for all ref-closing contexts C of type bool, we

have C [t1]) d1 : true iff C [t2]) d2 : true.

Lemma 4.1 Any derivation t
τ
- t 0 can be deduced t V t 00

τ
- t 000 � t 0 where t 00

τ
- t 000 can

be deduced without using structural equivalence.

Proof: A simple analysis of the rules which generateV suffices to show that any reduction which

may occur on the left-hand side of a rule may also occur on the right, so naught is to be gained

by cooling. 2

The reader may like to note that the νref-calculus contains closed terms which may not necessar-

ily converge to a prevalue, such as let x = ?r in t. However, all such terms are ref-open, and

our reduction semantics is only used for ref-closed terms.

4.3 Labelled transition system semantics

We need to provide a semantics for terms with references, so judgements are now of the form

(∆;R;W` p : σ)

γ
-

(∆;∆0;R;W` t : σ0

). Note that since terms cannot generate new references,

that the reference environments are not changed by transitions.

Extend the grammar of labels with:

γ ::= � � � j r:=n j ?r

The new transitions allow a name to be assigned:

(∆;R; ` () : unit)
r:=n
-

(∆;R; ` r := n : () : unit) (where n 2 ∆)
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and to be read:

(∆;R; ` () : unit)
?r
-

(∆;R; ` ?r : name) (where r 2 R)

We weaken the side-condition on application to allow the argument to include free references:

(∆;R; ` v : σ! σ0

)

@v0

-

(∆;R; ` v(v0) : σ0

) (where ∆;R; ` v0 : σ)

Transitions are allowed in assignment contexts:

(∆;R[ r;Wn r ` p : σ)

γ
-

(∆;∆0;R[ r;Wn r ` t : σ0

)

(∆;R;W `







Proposition 5.1 If Π is passive in (Γ;∆;R; ` v : σ) and in (Γ



(b) n is passive in p1, so p2 can match it by ignoring the name (which is added to the

passive name environment Π).

3. Π only contains passive names.

Overt bisimulation is a partial equivalence relation, and we can show a generalization of transi-

tivity, as evidenced in the following lemma.

Lemma 5.2 If Γ;∆;R;W � t �
Π0;Π1
o

�

�

Π0;Π2
o u : σ then Γ;∆;R;W � t �

Π0;Π1;Π2
o

�

u : σ.

Proof: It suffices to show the result for ref-closed terms, since we can then close up under all

closing substitutions and ref-closing assignments. Define:

RΠ0

=

�

(t;u) j t �Π0;Π1
o �

Π0;Π2
o u; and Π0

= Π0;Π1;Π2

	

:

It is not difficult to check that R forms an overt bisimulation. 2

Since an overt simulation is a simulation, it is easy to see that �o is a finer relation than �. In

fact, we can show that overt bisimulation coincides with bisimulation.

Proposition 5.3 � is the same as �o

Proof: Define ∆;Π; ;W � t1 �
Π t2 : σ whenever ∆; ;W � νΠ : t1 � νΠ : t2 : σ and Π is passive

in t1 and t2. It is routine to verify that this is an overt bisimulation, and that it coincides with

bisimulation when Π is empty. 2

5.3 Congruence of overt bisimulation

The proof that overt bisimulation is a congruence uses Howe’s technique, but the definition of��

is rather more complex, since we have to allow names to move between the passive and active

name environments.

Define �Π
o
�

by two rules:

Γ;∆;R;W � t1
d

�

Π
o
�

t2 Γ;∆;R;W � t2 �
Π;Π0

o

�

t3

Γ;∆;R;W � t1 �
Π;Π0

o

�

t3

and:
Γ;∆;n;R;W� t1 �

Π;n
o

�

t2 Γ;∆;R;W � νn : t2 �
Π
o
�

t3
Γ;∆;R;W � νn : t1 �

Π
o
�

t3

This relation satisfies the usual [6] properties required of this relation, that is it contains theˆ

closure of itself and it contains overt bisimulation.

Lemma 5.4 If Γ;∆;R;W � t �
Π0;Π1
o

�

�

Π0;Π2
o

�

u : σ then Γ;∆;R;W � t �
Π0;Π1;Π2
o

�

u : σ.

Proof: Suppose Γ;∆;R;W � t �
Π0;Π1
o

�

t0 �
Π0;Π2
o u : σ and proceed by induction on the structure

of t. There are two main cases to consider based on how the Howe relation decomposes.

Firstlyde�tly4862J
/R-16-1.997880(t)0 0 -1 144 35o12 12 Tf
6 0 Td
[71Suppose Γ;∆;Ρ;Ω

;P



Secondly, consider the case in which t is νn : t 0 and the latter Howe rule is used. This means

that there is some t 00 such that

Γ;∆;n;R;W � t 0 �Π0;Π1;n
o

�

t 00 : σ and Γ;∆;R;W � νn : t 00 �
Π0;Π1
o

�

t0 : σ:

We can apply the induction hypothesis to

Γ;∆;n;R;W� t 0 �Π0;Π1;n
o

�

t 00 �
Π0;Π1;Π2;n
o t 00 : σ

to yield Γ;∆;n;R;W� t 0 �
Π0;Π1;Π2;n
o

�

t 00 : σ, and use Lemma 5.2 again to obtain

Γ;∆;R;W � νn : t 00 �
Π0;Π1;Π2
o

�

u : σ:

From here we apply the second Howe rule to finish. 2

First, we show some technical lemmas, which extend obvious properties of bisimulation on



for some value v3. By Lemma 5.6 we have:

Γ;∆;n;R; � v3 �
Π;n
o

�

v2 : σ

so by weakening and definition of �Π
o
�

we have:

Γ;∆;n;R; � v1 �
Π;n
o

�

v
o

�

v



1. d2:v2 � νn0 : d5:v4 and Γ;∆;n0;R;W[ r � d4:v3 �
Π
o
�

d5:v4 : σ.

In this case, Lemma 5.4 gives us:

Γ;∆;n0;R;W[ r � d3:v1 �
Π
o

�

d5:v4 : σ

so by induction:

Γ;∆;n0;R;W[W0

� d3:



2. Γ;∆;n0;R;W[ r � d4:v3 �
Π;n0
o

�

d2:v2 : σ.

In this case, Lemma 5.4 gives us:

Γ;∆;n0;R;W[ r � d3:v1 �
Π;n0
o

�

d2:v2 : σ

so by induction:

Γ;∆;n0;R;W[W0

� d3:t1[v1=x]�Π;n0
o

�

d2:t2[v2=x] : σ0

and so:

Γ;∆;R;W[W0

� νn0 : d3:t1[v1=x] d�Π
o
� νn0 : d2:t2[v2=x]�Π

o

�

d2:t2[v2=x] : σ0

(where the latter equivalence holds since n0 does not occur free in d2:t2[v2=x]) and so

we can use the definition of �Π
o
�

to conclude. 2

We can then show that �� is a bisimulation up to (�;=) [19], from which it is routine to show

that overt bisimulation, and hence bisimulation, is a congruence.

Proposition 5.10 On ref-closed terms, �o
� is an overt bisimulation up to (�;=).

Proof: Take ∆; ;W � t �Π
o
�

u : σ. It is fairly easy to see that the latter two conditions for being

an overt bisimulation are satisfied, and we concentrate on showing that any transition of t can be

matched by a transition of u.

We will show a slightly more general result, which is that if:

∆; r;Wn r � t �Π
o

�

u : σ (∆; ;W ` r := n : t : σ)

α
-

(∆;∆0; ;W ` t 0 : σ)

then we can find u0 such that:

∆;∆0; ;W � t 0 ��Π
o

�

u0 : σ0

(∆; ;W ` r := n : u : σ) ===

α̂
) (∆;∆0; ;W ` u0 : σ0

)

In particular, note that we can take r to be empty and get the desired result.

We proceed by induction on the proof of �Π
o
�

. For most of the cases this is a completely

standard rule induction so we only detail the situations which vary from the usual approach.

In fact, we shall prove this property for a variant transition system, wher



Since we have:

(∆;n0; ;W ` r := n : t : σ)

ι:n0
-

(∆;n0; ;W ` r :



Case: Suppose (∆; ;W ` r := n : t : σ)

τ
-

(∆; ;W ` t 0 : σ). The most interesting case occurs

when this is an instance of the let block β-reduction, that is:

(∆; ;W ` r := n : let x = d1:v1 in t1 : σ)

τ
-

(∆; ;W ` r := n : d1:t1[v1=x] : σ)

We know, by definition of the Howe relation, that there exists some t0; t2 such that:

∆; r;W0

[ r0 � d1:v1 �
Π0

o

�

t0 : σ0 x : σ0;∆; r[ r0;W00

� t1 �
Π0

o

�

t2 : σ
∆; r;Wn r � let x = t0 in t1 �

Π
o u : σ

for some Π0

�Π, and W0

[W00

= Wn r. Since:

(∆; ;W0

[ r0 ` r := n : d1:v1 : σ0

)

id

-

(∆; ;W0

[ r0 ` r := n : d1:v1 : σ0

)

by induction we can find d2 and v2 such that:

(∆; ;W0

[ r0 ` r := n : t0 : σ0

) ===

id

) (∆; ;W0

[ r0 ` d2:v2 : σ0

)

and

∆; ;W0

[ r0 � r := n : d1:v1 ��
Π0

o

�

d2:v2 : σ0

and so:

(∆; ;W ` r := n : let x = t0 in t1 : σ) � (∆; ;W ` let x = r := n : t0 in t1 : σ)

) (∆; ;W ` let x = d2:v2 in t1 : σ)

τ
-

(∆; ;W ` d2:t1[v2=x] : σ)

and so we can find a u0 such that:

∆; ;W � d2:t1[v2=x]�Π
o u0 : σ0

(∆; ;W ` r := n : u : σ)) (∆; ;W ` u0 : σ)

We can now apply Proposition 5.9 to observe that:

∆; ;W � r := n : d1:t1[v1=x]��Π0

o

�

d2:t2[v2=x]�Π
o u0 : σ

and we use Lemma 5.4 to finish.

Case: We demonstrate how the Howe relation is preserved by structural congruence. In fact, we

know by Lemma 4.1 that we need only consider the heating rules and show that if t V t 0

and t �o
� u then t 0 �o

� u also. We use the following case as a typical example. Suppose:

(∆;R;W ` r := n : let x = t in t 0 : σ)V (∆;R;W ` let x = r := n : t in t 0 : σ)

We know that there is some t0 such that:

∆;R[ r;Wn r � let x = t in t 0 �Π0

o

�

t0 : σ ∆;R;W � r := n : t0 �
Π
o

�

u : σ

where Π0

�Π. We decompose the former further to obtain terms t 00 and t 000 and W;W00 such

that W0

[W00

= W and:

∆;R[ r;W0

n r � t �Π00

o

�

t 00 : σ0 x : σ;∆;R[ r;W00

� t 0 �Π00

o

�

t 000 : σ
∆;R[ r;Wn r � let x = t 00 in t 000 �

Π0

o

�

t0 : σ
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We observe that �o is easily seen to be congruent with respect to assignment so we can

obtain:

∆;R;W � let x = r := n : t in t 0 �

Π00

o

�

let x = r := n : t 00 in t 000

� r := n : let x = t 00 in t 000

�

Π0

o

�

r := n : t0

�

Π
o
�

u : σ

and so we are finished. 2

Corollary 5.11 �

� is a congruence for the νref-calculus.

5.4 Comments

Earlier in the paper we described the logical relations of [14] as an overt proof technique for

ν-calculus. We can see now that there are similarities between our overt bisimulation and the

logical relations. In particular, both techniques make use of a predicate to track the private names





(where Π;Π0 are not free in γ) as:

(∆;∆0; ;W ` t[v=x] : σ0

)

�

�R
-

(∆;∆0; ;W ` t[v[Π0

=Π]=x] : σ0

)

�

γ
�

w

w

w

w

w

w

w

w

w

�

�R
-

�

γ
�

w

w

w

w

w

w

w

w

w

so by Proposition A.2 we have that Π is passive in t[v=x]. 2

This proof relies on the fact that if t �R u then t cannot perform a n transition for any n in the

domain of R:

Proposition A.2 For any R : n$n, if ∆;R;W � t �R u : σ and (∆;R;W ` t : σ)

ι:n
- then n 62 n.

Proof: A straightforward induction on the proof of �R. 2



Proposition A.3 If Γ;Ψ�Θ� ∆;R;W � t �R u : σ then Γ;Ψ �Θ� ∆;R;W � t �1
R u : σ.

Proof: We proceed by induction on the proof of �R and notice that the type index Ψ �Θ plays



Case: t = x, so the result follows by the definition of �1
R.

Case: (∆;R;W ` t[



Case: The transition is a reduction of the form:

(∆;R;W ` E[x = x0][v=x] : σ)

τ
-

(∆;R;W ` E[b][v=x] : σ)

which is handled similarly to the previous case.

Case: The transition is a reduction of the form:

(∆;R;W ` E[if x then t1 else t2][



Proposition A.5 For any E with n passive typed:

Γ;∆;R0;W0

` � : σ0

Γ;∆;R;W ` E[�] : σ

if Γ;∆;R0;W0

� t �1
R t 0 : σ0 then Γ;∆;R;W � E[t]�1

R E[t 0] : σ.

Proof: Similar to the proof of Proposition A.4 with the addition of two cases which arise as an

interaction between E and t.

Case: E is E1[r := v : [�]] and t is E2[?r] so that

Γ;∆;R0

; r;W0

� E2[?r] �R E
0

2[?r]

with r not assigned to in E2;E 0

2. We observe that v cannot be a name in n and we easily get

Γ;∆; ;� v�R v. By definition of �R it follows that

Γ;y : name;∆;R0

; r;W0

� E2[y]�R E
0

2[y]

because any n which can be instantiated for y can be supplied to ?r using a closing assign-

ment. Given this it is a simple matter to use the definition of �R to yield

Γ;y : name;∆;R;W0

� E[E2[y]�R E[E
0

2[y]

and the result follows.

Case: E is E 0

[let x = [�] in u] and t is d1:v1 so that Γ;∆;R0;W0

� d1:v1 �R d2:v2. We use

Proposition A.10 to observe that Γ;∆;∆0;R0

;R00;� v1 �R v2 for appropriate ∆0

;R00. It is easy

to see that the hypothesis tells us that n are passive in Γ;x : σ0;∆;R;W ` E 0

[u] therefore

Γ;∆;∆0;R;R00

;W � E
0

[u[v1=x]]�R E
0

[u[v2=x]:

We use the definition of �R to obtain

Γ;∆;R;W � d1:E
0

[u[v1=x]�R d2:E
0

[u[v2=x]

and structural congruence to finish. 2

Proposition A.6 If Γ;∆;R;W � t �1
R t 0 : σ and [n0

=n]� R : n$n is a bijective substitution then

Γ;∆;R;W � t �1
R t 0[n0

=n] : σ.

Proof: For closed terms, this goes through immediately, since transitions are invariant under

bijective substitutions.

For open terms, consider any substitutions ∆;R; � [v=x] �1
R [w=x] : Γ. Since v and w are

closed, we have that:

∆;R; � [v=x]�1
R [w[n=n0

]=x] : Γ

and so since Γ;∆;R;W � t �1
R t 0 : σ we have:

∆;R;W � t[v=x]�1
R t 0[w[n=n0

]=x] : σ

and again we have closed terms, so:

∆;R;W � t[v=x]�1
R t 0[w[n=n0

]=x][n0

=n] = t 0[n0

=n][w=x] : σ

as required. 2
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Proposition A.7 If n are passive from Ψ �Θ in Γ;∆;R;W ` E[x(v)] : σ then n are passive from

Ψ �Θ in E and Γ;∆;R0;` v : σ0.

Proof:






