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< In‘separation’ logics [23], it is used to reason about dynamic update of heaj
like structures, and it istrongin that it forces names of resources in separatec
components to be disjoint. As a consequence, term composition is usua
partially defined.

« In static spatial logics (e.g. for trees [3], graphs [5] or trees with hidder
names [6]), the separatimomposition does not require any constraint on
terms, and names are usually shared between separated parts.

« Also in dynamic spatial logics (e.g. for ambients [7]1orcalculus [1]) the
separation is intended only for locations in space.

Context tree logic, introduced in [4], integrates the first approach above with
spatial logic for trees. The result is a logic able to express properties of tre
shaped structures (and contexts) with pointers, and it is used as an asser
language for Hoare-style program specifications in a tree memory model. E
sentially Spatial Logic uses the structure of the model to give semantics.

Bigraphs [16, 18] are an emerging model for structures in global comput
ing, that can be instantiated to model several well-known examples, includir
A-calculus [21], CCS [22]n-calculus [16], ambients [17] and Petri nets [20].
Bigraphs consist essentially of two graphs sharing the same nodes. The fi
graph, the
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This describes tw®C with di Cefient namesa andb, sharing a link on a distinct
namec
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graph Place graphs express locality, that is the physical arrangement of
nodes. Link graphs are hyper-graphs and formalise connections among noc
The orthogonality of the two structures dictates that nestings impose no constr:
upon interconnections.

The bigraphG of Fig. 1 represents a system where people and things intel
act. We imagine two @ces with employees logged d¥Cs. Every entity is
represented by a node, shown with bold outlines, and every node is associa
with acontrol (eitherPC, U, R1, R2). Controls represent the kinds of nodes, and
have fixedarities that determine their number of ports. Cont@ marks nodes
representing personal computers, and its arity is 3: in clockwise order, the po
represent a keyboard interacting with an employe@ LAN connection inter-
acting with anothePC and open to the outside network, and the mains plug of
the oLceR. The employed®) may communicate with another one via the upper
port in the picture. The nesting of nodes (place graph) is shown by the inclusic
of nodes into each other; the connections (link graph) are drawn as lines.

At the top level of the nesting structure sit tlegjions In Fig. 1 there is one
sole region (the dotted box). Inside nodes there may be ‘coritelds drawn as
shaded boxes, which are uniquely identified by ordinals. The hole marked by
represents the possibility for another useto get into o[ .ceR1 and sit in front
of aPC. The hole marked by 2 represents the possibility to plug a subsyste
inside o[ ceR2.

Place graphs can be seenagows over a symmetric monoidal category
whose objects are finite ordinals. We wriRe m - n to indicate a place graph
P with m holes andch regions. In Fig. 1, the place graph Gfis of type 2 - 1.
Given the place graphB,, P,, their compositiorP; o P, is defined only if the
holes ofP; are as many as the regions®f, and amounts tdilling holes with
regions, according to the number each carries. The tensor prBdlid®} is not
commutative, as it lays the two place graphs one next to the other (in order), th
obtaining a graph with more regions and holes, and it ‘renumbers’ regions ar
holes ‘from left to right'.

Link graphs are arrows of a partial monoidal category whose objects al
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N e

FOTTIR. Bigraphical compositiorH = G - (F1 CEb).

(finite) sets of names. In particular, we assume a denumerabteddatames. A

link graph is an arrowX - Y, with X, Y finite subsets of\. The seX represents

the inner names (drawn at the bottom of the bigraph) ahcepresents the set

of outer names (drawn on the top). The link graph connects ports to names or
to edgeg(represented in Fig. 1 by a line between nodes), in any finite number.
A link to a name isopen i.e., it may be connected to other nodes as bede

of composition. A link to an edge islosed as it cannot be further connected

to ports. Thus, edges apgivate or hidden, connections. The composition
of link graphsW - W corresponds tdinking the inner names dfV with the
corresponding outer names Wand forgetting about their identities. As a
consequence, the outer name¥\df(resp. inner names &f/) are not necessarily
inner (resp. outer) names @ - W Thus link graphs can perform substitution
and renaming, so the outer names\iitan disappear in the outer names of this
means that either names may be renamed or edges may be added to the structure.
As in [16], the tensor product of link graphs is defined in the obvious way only
if their inner (resp. outer) names are disjoint.

By combining ordinals with names we obtairterfacesi.e., couplesm, X[
wheremis an ordinal an is a finite set of names. By combining the notion of
place graph and link graphs on the same nodes we obtain the notion of bigraphs,
i.e., arrowss : [m, X[ M Y

Figure 2 represents a more complex situation. Its top left-hand side reports
the system of Fig. 1, in its bottom left-hand side
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names create the new links between the two structures. Intuitively, compositit
first places every region df in the proper hole o6 (place composition) and
thenjoins equal inner names @& and outer names df (link composition). In
the example, as a consequence of the composition theluisethe first region

of F is logged orPC, the uselJ in the second region df is in roomR2. More-
over note the edge connecting the inner nayrea®dzin G, its presence produces
a link between the two users &f after the composition, imagine a phone call
between the two users.

3 BilLog: syntax and semantics

The final aim of the paper is to define a logic able to describe bigraphs and the
substructures. As bigraphs, place graphs, and link graphs are arrows of a (part
monoidal category, we first introduce a meta-logical framework having monoids
categories as models; then we adapt it to model the orthogonal structures of pl
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Table 3.1.BiLog terms

G,GE:=0 constructor (for Q [O)
G-GH vertical composition
G @~ horizontal composition

Table 3.2.Typing rules
I

typeQ) =1 - J G:1, 3 F:l o IU

Q:1-13J G-F:l > J

GilioJ Filbod I=1L,[3F J=)[3H
GLH: I - J

Terms represent structures built on a (partial) monaid I Tlwhose ele-
ments are dubbeitterfacesand denoted by, J. To model hominal resources,
such as heaps or link graphs, we allow the monoid to be partial.

Intuitively, terms represent typed structures with a source and a target inter-
face G: I - J
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Table 3.3.Axioms

I
Congruence Axioms:

G=G Reflexivity

G = GHmplies GF= G Symmetry

G = GMand G™= GMimplies G = G™ Transitivity

G = GMand F = Fimplies G < F = G- FUJ Congruence ©

G = G"and F = FHmplies G [H = GV CE Congruence [1
Monoidal Category Axioms:

Geidi=G=id; -G Identity

(G1°Gy) e G3 =Gy ° (Gy ° G) Associativity

G Ode=G=idgQa Monoid Identity

(G, [@) [(G3=G; (B, [Gy) Monoid Associativity

id, Cd; =idy Interface ldentity

(G [HY) » (G [EL) = (G Gy) [(Fy ° Fp) Bifunctoriality

terms in general. When the framework is instantiated, terms specialise to re
resent particular structures and the logic specialises to describe such a parti
lar structures as well. The semantics of a BiLog formula corresponds to a se
of terms. The logic will feature spatial connectives in the sense Spatial Log
ics [1, 7].

3.2 Transparency

In general not every structure of the model corresponds to an observable str
ture in a spatial logic. A classical example is ambient logic. Some mobile amb
ent constructors have their logical equivalent, e.g. ambients, and other ones
not directly mapped in the logic, e.g. tire and out prefixes. In this case the
observability of the structure is distinguished from the observability of the com
putational terms: some terms are used to express behaviour and other to exp
structure. Moreover there are terms representing both structure and possible
haviour, since ambients can be opened.

The structure may be used not only to represent the distribution or the sha
of resources but also to encode their behaviour. We may want to avoid a dire
representation of some structures at logical level of BiLog. A natural solution i
to define a notion ofransparencyover the structure. In such a way, entities re-
ally representing the structure @gransparentwhile entities encoding behaviour
areopaqueand cannot be distinguished by the logical spatial connectives. A
bifunctorial terms are interpreted as arrows, transparent terms allow the logic
see their entire structure till the source interface, while opaque terms block tl
inspection at some middle point. A notion of transparency can also appear
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models without temporal behaviour. In fact, consider a model with an access
control policy defined on the structure. The policy may be variable and defined
on constructors by the administrator. Thus, some terms may be transparent or
opaque, depending on the current policy, and the visibility in the logic, or in the
query language, will be influenced by this.

When the model is dynamic, the reacting contexts, namely those with a pos-
sible temporal evolution, are specified with an activeness predicate. We may be
tempted to identify transparency as the activeness of terms. Although these con-
cepts coincide in some case, in general they are completely orthogonal. There
may be transparent terms that are active, such as a public lochtgmtory;
opaque terms that are active, such as an agent that hides its content; passive
transparent terms, such as a script code; and passive opague terms, such as con-
trols encoding synchronisation. Indeed, the transparenoytli®mgonalto the
concept of activeness.

More generally the transparency predicate avoids that every single term in
the structure is mapped to its logical equivalent. Models can have additional
structure not observable. Consider, as another example, an XML document. We
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Table 3.4BiLog(M, 11D, =, 1)
I

Qu=id|...
AB :=F

id

A B

A Bl

A[=B
GEF iff
GEA [B1 iff
GEQ iff
GEid iff
GEALB iff
GEA-B iff

GEA B iff
GEA B iff
GEALE=B iff

GEA-CB if

a constant formula for every Q s.t. T(Q)

false A [B1 implication

identity Q constant constructor

tensor product A-B composition

left comp. adjunct A [CB1 right comp. adjunct
A

left prod. adjunct —[B right prod. adjunct
never

G E Aimplies GE B

G=Q

exists | s.t. G =id,

exists G1,Gost. G=G; [Gy, withGy; FAand G, EB
exists G1,G,. s.t. G= Gy » Gy,

with T(G;) and G; F Aand G, F B

for all G5'the fact that G-+ A and (G and (G™- G)!
implies GY G F B

T(G) implies that for all GY

if G Aand (G GOt then G - GTE B

for all GH the fact that GH= A and (GFLG)!

implies GPC@E B

for all G5'the fact that G- Aand (G CGQY:

implies G [G“F B

see that when all terms are observable the logical equivalence corresponds
=. Otherwise, it can be less discriminating. We assume ithat
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and place graph. Theertical decompositioformulaA - B is satisfied by terms
that can be the composition of terms satisfyivgind B. We shall see that in
some cases both the connectives correspond to well known spatial connectives.
We define thdeft andright adjunctsfor composition and tensor to express ex-
tensional properties. The left adjurist (B éxpresses the property of a term to
satisfyB whenever inserted in a context satisfyidgSimilarly, the right adjunct
A [CBExpresses the property of a context to satBfywhenever filled with a
term satisfyingA. A similar description forl=and-[,the adjoints ofL_They
collapse if the tensor is commutative in the model.

3.4 Properties

Here we show some basic results about BiLog. In particular, we observe that,
in presence of trivial transparency, the induced logical equivalence coincides
with the structural congruence of the terms. Such a property is fundamental
to describe, query and reason about bigraphical data structures, as e.g. XML
(cf. [12]). In other terms, BiLog isntensionalin the sense of [25], namely it can
observe internal structures, as opposed to the extensional logics used to observe
the behaviour of dynamic system. Inspired by [15], it would be possible to study
a fragment of BiLog without the intensional operat@rsd, and constants.

The lemma below states that the relatfpmespects the congruence.

Lemma 1 (Congruence preservation).For every couple of term G and'G;
if GEAandG=G" then GEA
Proof. Induction on the structure of the formula, by recalling that the congruence
is required to preserve the typing and the transparency. In detail
COIME. Nothing to prove.

CIIIM. By hypothesisG F Q andG = G By definitionG = Q and by
transitivity G-= Q, thusG-F Q.

CImiy. By hypothesisG [ id andG = G Hence there exists dnsuch that
G'"= G =id, and soG kE id.

CIIIA [CB1By hypothesiG F A [CBAndG = G- This means that i F A
thenG [E B. By induction ifGHE AthenG E A. Thus ifGHE AthenG E B
and again by inductio®"} B.

CLIA By hypothesisG | A [CB andG = G- Thus there exisG;, G,B
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CIIA [CBI1By hypothesiG F A [CB&ndG = G~ Thus for everyG™such
thatG™E A andt(G" and G™- G)! it holdsG™- G E B. NowG = G"
impliesG™- G = G™- G moreover the congruence preserves typing, sc
(G™e G5, . By inductionG™- G B, then conclud&™ A [CB1

CIIA [CBIIf 1(GY is not verified, thel™= A [_Biivially holds. Suppose
T(GY to be verified. AsG = GMand transparency preserves congruence
1(G) is verified as well. By hypothesis for ea@iPsatisfyingA such that
(G - GH it holdsG - G™E B, and by inductiorG" G™ B, asG = G-
and G - G, implies G™- GH1 andG - G™= G”- G™ This proves
G- A B

CIA [=B (and symmetricallA —[B). By hypothesiss F A [=B andG =
G" Thus for eactG™such thaG™= A and G™' Q) thenG™[Q E B.
Now G = GMimpliesG™ G = G™ G again the congruence must
preserve typing so@™ QY. Thus by inductiorG™ G B. The
generality ofG™mpliesGE A [=B.

1

BiLog induces a logical equivaleneg on terms in the usual sense. We say
thatG; = G if for every formulaA, G; E A impliesG, E A and vice versa.
It is easy to prove that the logical equivalence corresponds to the congruence
the model if the transparency predicate is totally verified.

Theorem 1 (Logical equivalence and congruence)lf the transparency predi-
cate is verified on every term, then for every term Git@olds G=_ GHf and
only if G= G

Proof. The forward direction is proved by defining the characteristic formulg
for terms, as every term can be expressed as a formula. In fact, the transpare
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4 BilLog: derived operators

Table 4.1 outlines some interesting operators that can be derived in BiLog. The
classical operators and those constraining the interfaces are self-explanatory. The
‘dual’ operators need a few explanations. The formulaBlis satisfied by terms

G such that for every possible decompositiGn= G; [ G, eitherG; E A

or G, E B. For instanceA [CA describes terms wherk is true in, at least,

one part of eaclizdecomposition. The formul (T, [—A)][Eldescribes

those terms where every component with outerflasatisfiesA. Similarly, the
compositionA = B expresses structural properties universally quantified on every
o-decomposition. Both these connectives are useful to specify security properties
or types.

The adjunct duah [BHescribes terms that can be inserted into a partic-
ular context satisfyind\ to obtain a term satisfyin@, it is a sort of existential
guantification on contexts. For instand€e;([(),) [—Adescribes the union be-
tween the class of two-region bigraphs (with no names in the outerface) whose
merging satisfied\, and terms that can be inserted eithefinor Q, resulting
in a term satisfyingA. Similarly the dual adjuncA [—BHescribes contextual
termsG such that there exists a term satisfyifighat inserted irG gives a term
satisfyingB.

The formulaeA™HATHA™] and A= correspond to quantifications on the
horizontalvertical structure of terms. For instan@=describes terms that are
a finite (possibly empty) composition of simple terf2s The two last spatial
modalities are discussed in the next section.

A first property involving the derived connectives is stated in the following
lemma, proving that the interfaces for transparent terms can be observed.

Lemma 2 (Type observation). For every term G, it holds: G= A, _; if and
onlyifG:1 - Jand GE A andt(G).

Proof. For the forward direction, assume ti@&t= A, _ 3, thenG = id; - G™- id,
with GHE A andt(GY. Now,idy « GPeid; : 1 - J
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Table 4.1.Derived Operators
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I'I',L,—_IS-@»,

A
A, &

def
1 -J

AL =
A°| B d:Ef
A B
A [ BI¥
AR %
AeB ¥
A [B1¥

A [BI¥
AEEI:I def

AT gef
AR

AIEI def

Ao |d|

idJ o A
(A)-s

Ao |d| B
A.; Bl
A LBl
-(-A [=B)
—|(—|A° —IB)
-(=A [=B)
-~(-A [=H)
T CA LT
F CAILCE
TeoA-T
Fe Tdef

Classical operators

Constraining the source to be |
Constraining the target to be J
Constraining the typetobe | - J
Composition with interface |
Contexts with J as target guarantee
Composing with terms having | as source
Dual of tensor product

Dual of composition

Dual of composition left adjunct
Dual of composition right adjunct
Some horizontal term satisfies A
Every horizontal term satisfies A
Some vertical term satisfies A
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Proposition 1. For every term G of typé - J, it is the case that
G E O Aif and only if there exists BCA such that GE A

Proof.

15
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valid when ( [CI) .

In general, given two formulad, B we say thatA yields B and we write
A [B, if for every termG it is the case thak | AimpliesG E B. Moreover, we
write A [IIB to say bothA (B andB [CA.

Assume that andJ are two interfaces such that their tensor produttdlis
defined. Then, the bifuctoriality property in the logic is expressed by

(A » B.)) C(AY- BY)) M CAL) - (B, [BY)). (1)
In fact, we prove the following
Proposition 2. Wheneve(l [, the equation (1) holds in the logic.
Proof. Prove separately the two way of the satisfaction. First prove

(A ° B_)) CAY- BY)) (A CAG) - (B, [BY))

Assume thaG E (A - B.;) (A} - BY,). This means that there exist
GHU: 15U, TG 3B, JMsych thatl © I and 1™ 1™ are defined, and
G =GP @™ with G A - B.; andG™E Aj'> BY). Now,GHE A = B
means that there exi&; andG, such thaG™= G; - G, and

e Gp: | - JYwith 1(Gy) andG; E A
e Gy 1P. I, withG, E B
Similarly, G™= A} B meanG™= G- G 'and
e G J - JTwith TG andG!'E A™
e GF: 1ML J, with G, E BY

In particular, conclud& = (G; » Gy) (B> GS). As| [Jis defined,
(G1 B » (G [CBS) is an admissible composition. The bifunctoriality
property impliesG = (G, [@}) - (G, Q). Moreovert(G; [CQY), ast(Gy)
andt(G}). Hence conclude th& | (A, CAL) - (B, [B,), as required.

For the converse, prove

(A CA) (B, [BH,) COA - B.)) LAY~ BY)).

Assume thaG F (A [CAj) - (B, [BY)). By following the same lines as
before, deduce th&@ = (G, [Q}) - (G, [G;), where

- (G [@))

G;: 1l - JSsuchthaG; F A
GH: J - JTsuch thaGlE A™
G, : 17- I suchthaG, F B
G 1™, J such thaG; = BY
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Also in this case, we the tensor product of the required interfaces can be per-
formed. Hence compos&{ - G;) (G}~ G). Again, the bifunctoriality
property impliesG = (G,
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Table 5.1.Additional Axioms for Place Graphs Structural Congruence
L

metry Id
m = idmem
Ymth

nhme.
963 Tf -263.366 -16.495 Td[(vOaP()]TJ/Tf 7.719 0 Td[(()]TJI/F88 9.963 Tf 3.318 0 Td[(join)]TI/F
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Table 5.2.Information tree Terms (ovek) and congruence

I
T,T¥=0 empty tree consisting of a single root node

a[T] single edge tree labelled | CA leading to the subtree T
T | THtree obtained by merging the roots of the trees T and T

T|0O=T neutral element
TIT=THT commutativity
(TITYITE=T|(THTY associativity

L

Table 5.3.Propositional Spatial Tree Logic
I

AB:=F anything alA] location
0 empty tree A@a location adjunct
A [CB1 implication A|B  composition
A[B  composition adjunct
T Emf iff  never
T EmmP iff F=0

TEmA CB1 iff T EqmA implies T FoB

T Erma[Al iff there exists THst. T =a[FY and THeA
TFmA@a  iff  a[T] FooA

TEmA| B iff there exists T4, TTand
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Table 5.4.Encoding STL in PGL over prime ground place graphs

I
Trees into Prime Ground Place Graphs
[01=1 [aT]l€K@-[T] [TulT2] Ejoine ([T2] COT2])

STL formulae into PGL formulae

[0] =1 [a[Al] £K(@) >1 [ A]
[FIEF [A@a] £'K(a) LiA]
[A CBIZ[A] CIB] [AIBIE[AlILBI]

[ADB] Z([A]]id) LB]

we remark that{(i) the parallel composition of STL is the structural commuta-
tive separation of PGL(ii) tree labels can be represented by the correspondin
controls of the place grapifiii) location and composition adjuncts of STL are
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it is easy to see that the encodings [ ] and ( ) are one the inverse of the other,
hence they give a bijection from trees to prime ground place graphs, fundamental
in the proof of the following theorem.

Theorem 2 (Encoding STL). For each tree T and formula A of STL:

TEmA ifandonlyif [T] E[A].
Proof. The theorem is proved by structural induction on STL formulae. The
transparency predicate is not considered here, as it is verified on every control.
The basic step deals with the constaRtand0. CaseF follows by definition.
Forthecas®, [ T] E[ 0] means [T] E 1, that by definitionis [T] = 1 and
soT=([T]) =(1)
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case that for everg : 0 —» 1 such thag [ A] it holds join(g [id;) °
[T] E [B]. that isjoin(g CJOT]) E [ B] by bifunctoriality property.
Since the encoding is a bijection, this is equivalent to say that for every tre
TSsuch that [TH F [ A] it holdsjoin([ T CHT]) F [ B], thatis [T

T] E [ B]. By induction hypothesis, for every “such thaiT A it
holdsTH T Fj
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Table 5.5.Additional Axioms for Link Graph Structural Congruence

I
Link Axioms:

4y =idy Link Identity

/a-23/,=/b Closing renaming

/a-a=ido Idle edge

b/(\mja)]o (idy CFy) = /yvx Composing substitutions
Link Node Axiom:

o ° KgF Kuan Renaming

andk = ar(K). The controKgtepresents a resource of kikdvith named ports
&Any ports may be connected to other node ports via wiring compositions.
In this case, the structural congruereas refined as outlined in Tab. 5.5
with obvious axioms for links, modelling-conversion and extrusion of closed
names. We assume the transparency predicegeified for wiring constructors.
Fixed the transparency predicatdor each control inK, the Link Graph
Logic LGL(K, 1) is BiLog(Psin(N), T, K s, 3/
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[W3W for (WP Lidxny) = W and if &% ay, ..., a, andb2 by, ..., by, we write
al bfora, « b, 1. Ca, ~ b, similarly for &% b-JFrom the tensor
product it is possible to derive a product with sharingkaiGivenG : X - Y
andG™: X“_ YHwith X n X“= [ We choose a lish-{with the same length as
&) bf fresh names. The composition with sharing

c ot (g BB & 6) ray.

In this case, the tensor product is well defined since all the common rates
W are renamed to fresh names, while the sharing is re-established afterwards
linking the &dames with thé-Aames.

By extending this sharing to all names we define the parallel compo&tjon
G"as a total operation. However, such an operator does not behave ‘well’ wi
respect to the composition, as shown in [19]. In addition a direct inclusion of
corresponding connective in the logic would impact the satisfaction relation b
expanding the finite horizontal decompositions to the boundless possible nan
sharing decompositions. (This may be the main reason why logics describil
models with name closure and parallel composition are undecidable [11].) Th
is due to the fact that the set of names shared by a parallel composition is r
known in advance, and therefore parallel composition can only be defined |
using an existential quantification over the entire set of shared names.

Names can be internalised anfiegtively made private to a bigraph by the
closure operatafa. The eledt of composition with/a is to add a new edge with
no public name, and therefore to makeo 8 9.963 Tf 5
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Table 5.6.Spatial graph Terms (with local names) and congruence

I

G,GM:= nil  empty graph
a(x,y) single edge graph labelled a /A connecting the nodes X, y
G | GMcomposing the graphs G, G5 with sharing of nodes
(vX)G the node Xxis local in G

G|nil=G neutral element
G|GEGHG commutativity
G|GY|G™=G| (GH G associativity

y In(G) implies (VX)G = (VW)G{X < vy} renaming

(vX)nil = nil extrusion Zero

x [AIn(G) implies G | (vX)G™= (vX)(G | GY extrusion composition
x [y)z implies (vX)a(y, 2 = a(y, 2 extrusion edge

(X)f 3.318 0 Td[(0)]J/F88 90 3.367Ze(367Ze(3)]TO Td[(j)]51 0 Td[(z)]TI/F78
Table O]TJ/F88 9.963 Tf 42.411 0 Td[(Spatial)-250(gr)15(aph)-250(T)92(erms)-050with
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Table 5.7 Propositional Spatial Graph Logic (SGL)

o, P:=F false a(x,y) anedgefromxtoy
nil empty graph oy composition
¢ [0 1 implication

G Fmof iff never

G Eqmnil iff G =nil

GFmm$ [ iff GEFmmp implies G Frmil
GFua(xy) iff G=a(xy)
GFEuh | Y iff there exists G;,G; s.t.
G=G; |G, and Gy Earh and Gy Frri

Table 5.8.Encoding Propositional SGL in LGL over ground link graphs

ISpatial Graphs into Two-ported Ground Link Graphs
[nil]x £X
I[ a(X, y) ]I X ) K(a)x,y X\ {X, y}
[(vGIx £ ((“x Dﬂé\{x}) °[Glmx)) L} n X)
[GIGAx¥[G]x LG
SGL formulae into LGL formulae
[ nil Tx &' X [ a(x y)Ix £ K@xy CX\{xy})
[FIx=F [¢ CEMx =[o1x CEWIx

OV [01x Lhwlx

type [ [ XCIThe results in [19] say that a bigraph without nested nodes and
1 X[Cas outerface have the following normal form (wh¥&ré_XI):

Gu=(/Z|idmxde (X[ Mo]...| Mi-1)
M = Kyy(@) o 1
The inverse encoding is based on such a normal form:
((/Z]idmxoy e (X[ Mo ... | Mk=1)) £ (vZ) (il | (Mo | ... | ( Mk-1])
(Kxy(@ 1) Za(xy)

Notice that the extrusion properties of local names correspond to node and link
axioms. The encodings [ ] and ( ) provide a bijection, up to congruence, be-
tween graphs of SGL and ground link graphs with outer fAcand built by
controls of arity 2. 1



28 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone
The previous lemma is fundamental in proving that the soundness of tt
encoding forS GLin BiLog, stated in the following theorem.

Theorem 3 (Encoding SGL). For every graph G, every finite set X containing
fn(G), and every formula of the propositional fragment of SGL:

GEmp ifandonlyif [GIxE[®]x.

Proof. By induction on formulae of SGL. The transparency predicate is not con
sidered here, as it is verified on every control. The basic step deals with tt
constantsF, nil anda
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Table 5.9.Additional axioms for Bigraph Structural Congruence

29

I

Symmetric Category Axioms:
Yi.cF id Symmetry Id
Y1,3 © Yagruence
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ity and connectivity. To testify this, 85.7 shows how recently proposed Conte
Logic for Trees (CTL) [4] can be encoded into bigraphs. The idea of the encor
ing is to extend the encoding of STL with (single-hole) contexts and identifies
nodes. First, §5.6 gives some details on the transparency predicate.

5.6 Transparency on bigraphs

In the logical framework we gave the minimal restrictions on the transparenc
predicate to prove our results. Here we show a way to define a transparer
predicate. The most natural way is to make the transparent terms a sub-categ
of the more general category of terms. This essentially means to impose t
product and the composition of two transparent terms to be transparent.

Thus transparency on all terms is derived from a transparency piicy
defined only on the constructors. Note that the transparency definition deper
also on the congruence. In the following definition we show how to derive thi
transparency from a transparency policy.

Definition 2 (Transparency). Given the monoid of interfacé#, [ 1)) the set
of constructors®, the congruences and a transparency policy predicate
defined on the constructors @we define the transparency on terms as follows:

G=id, LG: L | G=Q 1(Q)
1(G) 1(G) 1(G)
G=G [& TGy TGy) G=G1°G 1(Gy) TG)
(G) (G)

Next lemma proves that the condition we posed on the transparency predic
holds for this particular definition.

Lemma 5 (Transparency properties). If G is ground or G is an identity then
1(G) is verified. Moreover, if G Gtthent(G) is equivalent tar(GY.

Proof. The former statement is verified by definition. The latter is proved by
induction on the derivations. 1

We assume every bigraphical constructor, that is not a control, to be tran
parent and the transparency policy to be defined only on the controls. The trar
parency the policy can be defined. for instance, for security reasons.

5.7 Encoding CTL

Paper [4] presents a spatial context logic to describe programs manipulating
tree structured memory. The model of the logic is the set of unordered labelle
treesT andlinear contexts Cwhich are trees with a unique hole. Every node has
a name, so to identify memory locations. From the model, the logic is dubbe
Context Tree Logic, CTL in the following. Given a denumerable set of label
and a denumerable set of identifiers, trees and contexts are defined in Tab. 5.
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Table 5.11 Context Tree Logic (CTL)

I
P,P-:= false
0 empty tree formula
K(P) context application
K [P context application adjunct
P P3 implication

K, KE=false
- identity context formula
a[K] node context formula
P P” context application adjunct
P|K parallel context formula
K KT implication

Table 5.12 Semantics for CTL

I
T |1 false iff  never
TETO iff T=0
T Er K(P) iff  there exist C, TPs.t. C(TY well-formed, and T = C(TY
and CFg K and THer P
TFEr KPP iff foreveryC: CFk K and C(T) well-formed
implies C(T) 1 P
TEr P CPH iff TgEr Pimplies T Er PY

C [k false iff  never

C |:K - iff = -

C Ek ay[K] iff  there exists CHs.t. a,[C] well-formed, and
C=a,CTand CH=x K

CEk PPY iff foreveryT: Tt P and C(T) well-formed
implies C(T) Fr PY

CEk PIK iff  there exist CJ'T s.t. T | CHwell-formed, and
C=T|CMand Tt P and CH=¢ K

CEx K CKT iff CEx Kimplies T Er KT

L
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formulaid m,_-f0 represent identities on places by constraining the place part of
the interface to be fixed and leaving the name part to be free:

idm,_ 1= idm (M C=1id ;5.

It is easy to see th& [ idm,—-means that there exits a set of narXesuch that
G = idy, [Cidy. By using such an identity formula we define the corresponding
typed compositiorm,_and the typed adjuncté @, & Cek

A °H|:|B d:ef A © Id Eh,,[lo B
AlLg B % (dmceA [CBI1
ALg B £ (Acidm.p [CB1

We then define the operatafbr the parallel composition with separation oper-
ator [ds both a term constructor and a logical connective:

D [H £Tjoin](D CH) for D andE prime bigraphs
A B % (join Odg o (A.molB.mo for AandBformulae

The operatori_énables the encoding of trees and contexts to bigraphs. In
particular, we consider a signature with controls of arity 1 and we define the
transparency predicate to be verified on every control. Moreover we assume a
bijective function from tags to controls

ay B- K(a)x.

The details are outlined in Tab. 5.13. The encodings of trees turn ougi@bed
prime discrete bigraphsbigraphs with open links and type 8 [ X[1 The
result in [19] says that the normal form, up to permutations, for ground prime
discrete bigraphs is:

g = (join, Cdx) - (My . M),
whereM; are discrete ground molecules of the form
M = (K(a)x [idy)g.
We can now define the reverse encoding ( ) of [ ], from ground prime discrete
bigraphs to trees, involving such a normal form:
(joing) €0
((K@)x Cidy) = g) Ead(9)]
((join, Cidy) = (My . M) £ (Me) C1. CMk)
Moreover, the encodings of linear contexts turn out taubary discrete bi-

graphs G bigraphs with open links and tyg# X [} Y[JAgain, the resultin
[19] implies that the normal form, up to permutations, for unary discrete bigraphs
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Table 5.13Encoding CTL in BiLog over prime discrete ground bigraphs

I 1
Trees into prime ground Contexts into unary discrete bigraphs
discrete bigraphs [-1c &id;

[o] =1 [ax[Cl]c £ (K@x CIh(C)) » [Clc
[ax[TI] £(K@x CIN(T) o [T] [TICIcE[T] PClc

[T T2] E[T.] CPT2] [CITIcE[Clc OIT]

TL formulae into PGL formulae CTL formulae into PGL formulae

[ false]p £F [ false]k £F

[O]p &1 [-1k €id,

[KP1r [ K]k cm.cd Ple [PPIc E[Plr Cad Plp

[KP]p £[KIk Cxd Ple [ax[Kllk £ (K@) Cdg e [ Kk
[P CPHrE[P]r C[BYp [PIKIk £[P]r K]k
[K CKHx E[KIk CIHETK

G = (join, Cidy) » (R [CM; ). [My—y)
whereM; are discrete ground gro
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generalisation of Context Tree Logic to contexts with several holes and regions.
On the other hand, since STL is more general than separation logic, cf. [4], and it
is used to characterise programs that manipulate tree structured memory model,
BiLog can express separation logic as well.

6 Towards dynamics

The main aim of this paper is to introduce BiLog and its expressive power in
describing static structures. BiLog is however able to deal with the dynamic be-
haviour of the model, as well. Essentially, this happens thanks to the contextual
nature of the logic, suitable to characterise structural parametric reaction rules,
expressing dynamics.

A main feature of a distributed system is mobility, or dynamics in general.
In dealing with communicating and nhomadic processes, the interest is not only
to describe their internal structure, but also their behaviour. So far, it has been
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According to the formulation of the reduction given above, we obtain

gE ¢A i1 there exigiR RY 3, idy, D active, and d ground; such that
g=D-(RLOdy)ed,d=D- (R Cidy) cdandgE A (3)

One may wonder whether the modal#ys the only way to express a temporal
evolution in BiLog. It turns out that BiLog has a built in notion of dynamics. In
several cases, BiLog itself is §iciant to express the computation. One of them
is the encoding of CCS, shown in the following.
We focus on the fairly small fragment of CCS considered in [2], consisting

of prefix and parallel composition onlf, Q will range overprocessesanda, a
over actions, chosen in the enumerable/Aets The syntax of the calculus is
defined by the following grammar.

P === 0] AP | P|P

A == a | a
Note that the operataris not included, hence all the names appearing in a pro
cess are free, this fact yields the encoding to produce bigraphs with open lin
Thestructural congruences defined as the least congruersten processes such
thatP |0=P,P|Q=Q|P
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a finite set of names, viz., the outer names of the term that can fill the context. In
particular, the controlact andcoact are declared to bpassivei.e., no reaction
can occur inside them.

As already said, we consider bigraphs built on the contralg coact,. The
encoding [ x is parameterised by fnite subsetX [CActs In particular, the
encoding yields ground bigraphs with outer fadéX(“and open links. The
translation for processes is formally defined as

[0]x &£ 1[X

[aPlx & (acty Lidy) [ P]x
[2P]x £ (coacts Lidy) e [ P]x
[PIQIx £ joine(IPlx LIQI)

a

X
Wherea [X, and, with abuse of notation, the sharsegparation operatorl 1

al . .
stands for [Where&li$ any array of all the elements X Note, in particular,

that the sharing tensor_*“ eIliﬂllx” allows the process filling the hole iact,
(andcoact,) to perform other actiona. Moreoverjoin makes the tensor to be
commutative in the encoding of parallel, in fact there is a straight correspondence
between the parallel operators in the two calculi, #&]|[Q]x corresponds to
[Plx | [ Qlx, that is the parallel operator on bigraphs. The result stated in
Lemma 7 says that the encoding is bijective on prime ground bigraphs with open
links. First we need a general result on bigraphs and parallel composition.

Lemma 6 (Adding Names).
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2. For every couple of processes@and for every finite subset X_Acts in-
cluding the free names of @ it holds: P= Q ifand only iff P]x = [ Q] x-

Proof. Prove point (1) by showing that every prime ground bigraph with outer-
facelT] X[has at least one pre-image for the translatiofwJ. Proceed by induc-
tion on the number of nodes in the bigraphs. First we recall the connected norn
form for bigraphs. The paper [19] proves that every prime ground bigeapith
outerfacelT] X[&nd open links has the following Connected Normal Form:

G =X|F

F =M. | Mg

M= (Ky|idy) e F (for Ky [act,, coacty})

The base of induction is the bigrapfy and clearly [0]x = X. For the
inductive step, consider a bigra@hwith at least one node. This mea@s=
X | (Ka | idy) = F) | GH Without losing generality, assunig = act,, So by
Proposition 6:
G = (acta | idx) = (X| F) | (X| GY.

Now, the induction says that there exist P and Q such tid,{ = X | F and
[ Qlx
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In [22] it is proved that the translation preserves and reflects the reactions,
that is: P —[PHf and only if [ P] — CJ P1].
The reaction rules are defined as

(acta | idy,) | (coacts | idy,) —C& | idmy, idmy,

This can be mildly sugared to obtain the rule introduced in (5)
Moreover, the active contexts introduced in (6) can be rephrased as

g| C1

whereg is a single-rooted ground bigraph with open links. It is easy to conclude
that the most general context ready to react has the form

Lo lacty [ilcoact, Lo T N A1

the hole [gHas to be filled in by single-rooted ground bigraphs with open links,
whereas the hole§; dnd [; y ground bigraphs. Note that such a reduction is
compositional with the parallel operator. In case of the CCS translation, the a
reacting bigraphs are further characterised as shown in Lemma 8. In particular,
the lemma shows that every reactinB ] x can be decomposed into a redex and

a bigraph with a well defined structure, that is composed with a reactum to obtain
the result of the reaction. The Redex and the Reactum are formally outlined in
Tab. 6.1. They will be the key point to express the next step modality in BiLog.
Note thaty; andy, of the definition in Tab. 6.1 have to be disjoint with Y; and

Y,. They are useful for join the action with the corresponding coaction.

Table 6.1.Reacting Contexts for CCS

IBigraphs:
Rede¥Y>""2 &'\ o (idy [§din) » (idy Cjdin Cidy)  {((y1 « a)
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There exist the bigraphs;35,, Gs : [ [ X[Cand the name dX, such
that

[ P1x = ((acta | idx) = G1) | ((coact, | idx) © G2) | Gs
and G= G, | G, | Gs.

. There exist the actions BX and y,y, [X, and two mutually disjoint sub-

sets Y, Y, [CActs with the same cardinality as X, but disjoint withyX y»,
and there exist the bigraphs:H: - [ Y:[1H, : CO- [ Y.[Jand
Hs : [ [ X[Owith open links, such that

[ P1x = Rede§”"™" < (H; [H, [Hy)
and
G = Reacf*" o (H, [H, [Hy),
where Rede%*>""2 Reacf*? are defined in Tab. 6.1.
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W links y; andy, with a. By bifunctoriality property, [P] x is rewritten as

W e (idy [jdin) » (idy Ljdin [idy) © {((y1 ~ @) [id1) °
o acty [idy, [{y» ~ a) [id4) = coacty [idy, [Gs} »
°{((Y1 « X) [idy) » G; [Y2 « X) [idy) = Gz},
and, again by bifunctoriality property, as

W e (idy [jdin) » (idy Cjdin [idy) < {((y1 ~ @) [id) °
o acty [Cidy, [({y» ~ a) [id;) ° coact, Cidy, Cidmxc} ©
°{((Y1 « X) [idy) = Gy LYz « X) [idy) - G2 [ G}
Point (3) follows by definingH”= ((Y; « X) [dl;) » G; fori = 1,2, and
Hs = Gz . Note that the three bigrapld and H; have open links as so does

[ P1x. Finally, we point (3) implies point (2), since the previous reasoning can
be inverted. 1

By following the ideas of [22] it is easy to demonstrate that there is an ex-
act match between reaction relations generated in CCS and in the bigraphical
system, as stated in the following lemma.

Proposition 3 (Matching Reactions). For every finite set of names X it holds
P~ Q ifandonlyif [P]Ix—C0QIx
for every CCS process P and Q such that(REtAct(Q) [CX.

Proof. For the forward direction, proceed by induction on the number of the
rules applied in the derivation f&* - Q in CCS. The base of the induction is
the only rule without premixes, that meaRss a.P; | a.P, andQis Py | P,. The
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Table 6.2.Semantics of formulaksya in CCS

I

P Espat O ifP=0

P Espat —A if not P Fspat A

P Espat A LBl if PEgarAand P Fgpar B

P Fspat A|B if there exist R, Q, s.t. P=R| Q, RFspat Aand Q F Bgpat
P Fspar ALB if for every Q, Q Fspat Aimplies P | Q Fspat B

P Espat A if there exist P's.t. P —[P-and PH=gpat A

L

P; such that [P; ] corresponds td5;, hence [P] = [aPy | aP, | P3] and
[Q] =[Pi]| P2 Ps]. Again, Lemma 7 says thd® = a.P; | a.P, | P3 and
Q=Py|P2|Ps thenR - Q. 1

It can be proved an even stronger result: if a CCS translation reacts to
bigraph, then such a bigraph is a CCS translation as well, as formalised in t
lemma below.

Proposition 4 (Conservative Reaction).For every CCS process P such that
[ P1x —LG, there exists a CCS process Q such h@]x =G and P- Q.

Proof. Assume that P]x —[IG, then the point (2) of Lemma 8 says that
G has type[l- [ X[C&nd open links, since so doe®[x. This means, by
Lemma 7, that there exists a process Q such tig} f = G. ConcludeP - Q

by Lemma 3. 1

The work [2] introduces the spatial loglcspa: Suitable to describe the struc-
ture and the behaviour of CCS processes. The language of the logic is

AB == 0 | ACB | A|B | =A | A[B | A

It includes the basic spatial operators: the void constant 0, the composition ¢
erator|, and its adjunct operatdrlit presents also a temporal operator, the next
step modalitys, to capture the dynamics of the processes. The paper [2] define
a semantics tdspa in term of CCS processes, as outlined in Tab. 6.2. In partic-
ular, the parallel connective describes processes that are produced by the par:
between two processes that satisfies the corresponding formula. A process s
fies the formulaA B if it satisfied the formulaB whenever put in parallel with
a process satisfying. Finally the next ste@A is satisfied by a process that can
evolve into a process satisfyigy

The logic Lspa can be encoded in a suitable instantiation of BiLog, with-
out using the modality defined in (3). It is f@idnt to instantiate the logic
BiLog(M, L1, =, 1) to obtain the bigraphical encoding of CCS. We define
O to be composed by the standard constructor for a bigraphical system wi
K = {act, coact}, and the transparency predicatéo be always true. The fact
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thatt is verified on every term is determinant for the soundness of the encoding
we are describing.
Rephrasing Lemma 8 informally, we say that the set of reactions in CCS
are determined by couples of the forRegdey, Reactury) for everya [X, and
every reacting process is characterised by

[PIx
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the power of the somewhere operator. We will show that a bigraph satisfie
[ Plx E[ AB]x if it satisfies [B] x whenever connected in parallel with any
encoding of a CCS process satisfying [ x.

On the other side, in the encoding for the temporal modalitye supporting
formulaTriple is satisfied by processes that are the composition of three singl
rooted ground bigraphs whose outerfaces have the same number of naxnes a
We will show that a process satisfie®4] x if and only if it is the combination
of a particular redex with a bigraph that satisfies the requirement of Lemma
and moreover that the corresponding reactum satisfies(

The main result of this section is formalised in Proposition 5. It expresse
the semantical equivalence betweeg,, and its encoding in BiLog. Note in
particular the requirement for a finite set of actions performable by the CC
processes. Such a limitation is not due to the presence of the next step opera
Indeed, looking carefully at the proof, one can see that the induction step f
the temporal operator still holds in the case of a not-finite set of actions. On tt
contrary, the limitation is due to the adjoint operafain fact we need to bound
the number of names that is shared between the processes. This happens bec
of the diledent choice for the logical product operator in BiLog. On one hand
the spatial logic had the parallel operator built in. This means that the logic do«
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[ Alx, and this mean§) Fspar A by induction hypothesis. We conclude that
[ Plx E [ ¢Alx is equivalenttd® - Qwith Q Fspat A, NnamelyP Fgpat ¢A. [

7 Conclusions and future work

This paper moves a first step towards describing global resources by focusing
bigraphs. Our final objective is to design a general dynamic logic able to cog
uniformly with all the models bigraphs have been proved useful for, as of toda
these include\-calculus [21], Petri-nets [20], CCS [22], pi-calculus [16] and
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preserves decidability in spatial logics [11].

We have not addressed a logic for tree with hidden names. As a matter of fact,
we have such a logic. More precisely we can encode abstract trees into bigraphs
with an unique controamb with arity one. The name assigned to this control
will actually be the name of the ambient. The extrusion properties and renaming
of abstract trees have their correspondence in bigraphical terms by means of
substitution and closure properties combined with properties of identity.

BiLog can express properties of trees with names. At the logical level we
may encode operators of tree logic with hidden names as follows:

©a¥((@a~a) Od)-T
Cx AZUx (/x Cid) - A
Aa® AL (-©a A [{Aa [id) - A
Hx A%
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