
On Testing the Observable Actions of Processes

William Ferreira

Abstract. We present and investigate two testing preorders for a value-passing version of CCS, [Mil89] which

distinguish processes by their observable actions.

On Testing the Observable Actions of Processes 3

characterisations for them, de�ned independently of contexts. In section 4 we review must testing

for VPL, and then compare must testing to guarantee and strongly guarantee testing. We prove an

expressivity result relating must and guarantee testing under an assumption about the operational

semantics of the conditional expression if � then � else �. In section 5 we construct two denotational

models for the language, based on variations of value-passing acceptance trees [HI93], and in section 6

we prove that these models are fully abstract for their respective preorders.

2 Operational Semantics

In this section we present the syntax and operational semantics of VPL, the value-passing version

of � -less CCS introduced in [HI93]. Let:

� v; v

1

; v

2

; : : : 2 Val be a set of values,

� x; x

1

; x

2

; : : : 2 Var a set of expression variables,

� op 2 Op a set of functions or operator symbols,

� X;Y; Z 2 VRec a set of process variables, and

� n; n

1

; n

2

; : : : 2 Chan a prede�ned set of channel names.

The abstract syntax of our language is given by the following grammar:

e; e

1

; : : : 2 Exp := 0 j �:e j if l then e else e j e
2
e j enn j e[R] j �X:e j X j

2
2 BinOp := � j + j k

�; �

1

; �

2

; : : : 2 Pre := n?x j n!l

l; l

1

; l

2

; : : : 2 SExp := true j false j op(

~

l

i

) j v j x

The set Val could be any at domain of values such as the integers, in which Op would consist of

the familiar operations of addition, subtraction etc.; we also assume that Op includes the Boolean

operators. We ignore types, and assume that for any expression if l then e

1

else e

2

that l is a Boolean-

valued expression, and that the use of the operator symbols op is type-respecting. We use the

standard de�nition of free and bound variables for expressions, and use free(e) to denote the set of

free expression variables in e. We use ef~v

i

=~x

i

g for the simultaneous substitution of values ~v

i

for free

expression variables ~x

i

in e, while e[~e

i

=

~

X

i

] denotes the simultaneous substitution of terms ~e

i

for free

process variables

~

X

i

in e. We use VPL to denote the set of closed expressions in Exp , which we refer

to as processes. The constructs of VPL have the following informal meaning:

� if l then e

1

else e

2

{ a process that behaves like e

1

if l evaluates to true, and like e

2

otherwise,

� �:e { a process that performs the communication action speci�ed by � and then behaves like e,

� e

1

� e

2

{ a process that can evolve to either e

1

or e

2

without interaction with the environment,

� e

1

+ e

2

{ a process that behaves like e

1

or e

2

depending on the behaviour of the environment,

� e

1

k e

2

{ a process that allows the interleaving of the behaviours of e

1

and e

2

, or communication

between them,

� enn { a process that behaves like e except that it cannot o�er communications actions on channel

n to the environment,

� 0 { the inactive process,

� �X:e { the recursive process,

� e[R] { a process that behaves like e except that the channel names of actions performed by e are

renamed according to the renaming function R and,

�
 { the unde�ned or divergent process

We now present the operational semantics for processes, and to make things simpler we ignore the

evaluation of Boolean expressions. That is we assume that for each closed Boolean simple expression

l there is a corresponding truth value [[l]] and more generally for any Boolean simple expression l

6 William Ferreira

For both preorders, we de�ne their kernels �

G

and �

SG

as

@

�

G

\

@

�

G

�1

and

@

�

SG

\

@

�

SG

�1

respectively.

The universal quanti�cation over contexts in the de�nitions of the guarantee and strong

10 William Ferreira

Proof. For the if case we prove the contra-positive, so suppose that e 6+

G

s. If s = " then we have

e * in which case N

s

[e] * as well; otherwise for some s

1

; s

2

with s = s

1

s

2

we have either:

� e

s

1

=) e

0

; e

0

* { in this case we can show that N

s

[e]

"

=) e

1

with either:

e

1

= e

0

k if true then con(s

2

) else 0

or,

e

1

= e

0

k con(s

0

)

and therefore N

s

[e] * or,

� s

1

= s

0

1

:n!v and e

s

0

1

:n!v

0

====) e

0

with e

0

* { in this case we can show that:

N

s

[e]

"

=) e

0

k if false then con(s

00

) else 0

and therefore N

s

[e] *.

The only if case is proved by induction on s. If s = " then N

s

[e] = e k 0 and therefore N

s

[e] +

implies e +

12 William Ferreira

Proof. Assume the hypotheses of the proposition are true; �rstly we show that:

e

e

=) e

0

if and only if T

n;f

s;A

[e]

f(s)

==)T

n;f

";A

[e

0

]

by induction on s. For the only if part of the proposition we prove the contra-positive, so suppose

there exists B 2 A(e; s) such that A\B = ;. Therefore e

s

=) e

0

�

�6�! and B = S(e

0

) for some e

0

. By

examination of the transitions from T

n;f

s;A

[e] we can show that:

T

n;f

s;A

[e]

f(s)

==) (e

0

k 0)[R

A

n

]

and therefore:

G

n;f

s;A

[e]

"

=) (e

0

k 0)[R

A

n

] k 0

Since e

0

a

�6�! for any a 2 A we have that G

n;f

s;A

[e] 6#

G

n!. For the only if case the proof is by induction

on s. 2

The class of contexts needed to characterise strong acceptances is similar to that for the accep-

tances, except we need to record some additional information in the context about the set of pre�xes

A. Let In(A) denote the elements of A which are input pre�xes, i.e. of the form n? for some n, and

f

A

a �nite partial function from In(A) to Val . We de�ne the context S

n;f

s;A

by:

S

n;f

s;A

def

=[] k strong(s; A; f; n)

where:

strong("; A; f; n)

def

= strong(A; f; n)

strong(n?v:s; A; f; n)

def

= n!v:strong(s; A; f; n) + n!

strong(n!v:s; A; f; n)

def

= n?x:if x = v then strong(s; A; f; n) elsen! + n!

and:

strong(A; f; n)

def

=

X

fstrong(�; f) j � 2 Ag

strong(n?; f)

def

= n!f(n?):n!

strong(n!; f)

def

= n?x:n!

The set of pre�xes A in the context S

n;f

s;A

represent pre�xes drawn from the strong acceptances of

a process e after some sequence of actions s

On Testing the Observable Actions of Processes 13

Theorem 3.19. For e

1

; e

2

2 VPL we have:

e

1

@

�

G

e

2

implies e

On Testing the Observable Actions of Processes 15

Lemma 4.2. Let O 2 O

+

be an open term with free variables ~x, and � a substitution with ~x

i

�

dom(�), then:

O�

!

�! implies O�

0 !

�!

for all substitutions with ~x

i

� dom(�

0

).

Proof. The proof is by induction on the structure of O. 2

The import of this lemma is that there are many more observers in O

+

which are capable of

performing the success action !. This is precisely what makes

@

�

+

MT

no more discriminating than

@

�

+

G

for VPL

+

.

Theorem 4.3. For e

1

; e

2

2 VPL

+

we have:

e

1

@

�

+

MT

e

2

if and only if e

1

@

�

+

G

e

2

Proof. The proof of the only if case uses the fact that for observers:

O

?

def

=

16 William Ferreira

Another interesting property of

@

�

G

is that its discriminatory power is dependent on the presence of

the renaming operator; this is implicit in the proof of proposition 3.17. For example suppose that

the operator [R] is removed from the language, then we have no way of distinguishing between the

two terms:

e

1

def

= n

1

!v:((n

2

!v:
+ n

3

!v:
)� (n

4

!v:
+ n

5

!v:
)) and: e

2

def

= n

1

!v:(n

3

!v:
� n

5

!v:
)

First note that we cannot use any of the pre�xes n

2

: : :n

5

to distinguish between e

1

and e

2

because

there is no context C and n

i

! for 2 � i � 5 such that C [e

1

] #

G

n

i

!. If we try to utilise some fresh

pre�x �, then we run into problems because any context that tries to communicate with sub-terms

(n

2

!v:
+ n

3

!v:
) or (n

4

!v:
+ n

5

!v:
) of e

1

to guarantee �, will leave e

1

in a divergent state. The

renaming operator allows the context to avoid making any communication, by renaming the actions

of the process that we wish to communicate with to some fresh action. Note that e

1

and e

2

are

distinguished in

@

�

G

by the context:

C

def

=([] k n?x:0)[R]

where:

R(n

i

) =

�

n

0

if i = 2; 4

n

i

otherwise

where n

0

is a fresh channel name, since C [e

1

] #

G

n

0

! and C [e

2

] 6#

G

n

0

!.

To recapture the testing power of

@

�

G

without the renaming operator we need to strengthen the

predicate � #

G

� to sets of pre�xes, i.e. we need to de�ne � #

G

� as:

e #

G

A if e + and e

"

=) e

0

implies e

0 �

=) for some � 2 A

Let

@

�

be the preorder derived from the above de�nition of � #

G

� by closing up under all contexts.

Then we have e

1

6@

�

e

2

since C [e

1

] #

G

fn

1

!; n

3

!g and C [e

2

] 6#

G

fn

1

!; n

3

!g where:

C

def

=([] k n?x:0)

We have the following result:

Proposition 4.4. For e

1defm65(T)2999.67(o)]TJ
15.6 0 Td
(recapture)Tj
45.3602 0 Td
(the)Tj
185+126 0.24 Tf
-331.

18 William Ferreira

An interpretation of VPL in a domain D is given by a semantic function D[[]] with type:

D[[]] : Exp �! [Env

V

�! [Env

D

�! D]]

where Env

V

denotes the set of Val environments: mappings from the set of variables Var to the set

of values Val , and Env

D

is the set of D environments: mappings from the set of process variables

VRec to the model D. The function D[[]] is de�ned by structural induction on expressions as:

D[[x]]�� = �(x)

D[[0]]�� = 0

D

D[[
]]�� = ?

D[[e[R]]]�� = rename

D

R [[e]]��

D[[op(

~

l

i

)]]�� = [[op]](�(

~

l

i

)) for each op 2 Op

D[[2(~e

i

)]]�� = 2

D

(D[[~e

i

]]��) for 2 2 f�;+; kg

D[[�X:e]]�� = �x(�d:D[[e]]��[X 7! d])

D[[if l then e

1

else e

2

]]�� =

�

D[[e

1

]]� if [[l]]�� = true

D[[e

2

]]� otherwise

D[[n?x:e]]�� = in

D

n �v:D[[e]]�[x 7! v]�

D[[n!l:e]]�� =

�

out

D

n �(l) D[[e]]�� if l 2 Var

out

D

n l D[[e]]�� otherwise

where each of the functions 2

D

; rename

D

are continuous on D, and the functions in

D

and out

D

have type:

in

D

: Chan �! ((Val �! D) �! D)

out

D

: Chan �! (Val �! (D �! D))

where in

D

is continuous in its second argument and out

D

is continuous in its third argument, and

�x is the least �xed point operator.

On Testing the Observable Actions of Processes 19

= v

1

?

= v

2

?

= ?

and using (Val
 D) as the domain for modelling the sequels to output pre�xes. Suppose D is a

domain and �

D

is a continuous function on D satisfying for all elements d

1

; d

2

2 D:

d

1

�

D

d

2

� d

1

(1)

d

1

�

D

d

2

= d

2

�

D

d

1

(2)

d�

D

d = d (3)

then the pair hD;�

D

i is called a continuous upper semi-lattice [Gun92, Hen94]. We will use the

function �

D

as the interpretation of the internal choice operator � of VPL. We sometimes write

hD;�

D

i for the domain D with a continuous function �

D

satisfying (1) { (3) above.

Suppose hD;�

D

i and hE;�

E

i are domains:

� f : Val �D �! Val �E is right-linear if for elements d

1

; d

2

2 D:

f(v; d

1

)�

E

f(v; d

2

) = f(v; d

1

�

D

d

2

)

� f : D �! E is linear if for d

1

; d

2

2 D:

g(d

1

�

D

d

2

) = g(d

1

)�

E

g(d

2

) and,

� f : Val �D �! E is right-strict if:

f(v;?

D

) = ?

E

For domain hD;�

D

i let (Val
D) be the set characterised by the following universal property:

1.

20 William Ferreira

where:

G

def

= �x(�F:�Z:(Z [F (f(v; k

1

�

D

k

2

) j f(v; k

2

); (v; k

2

)g 2 Zg)))

We will write �

to refer to �

Val
D

.

Proposition 5.1. h

24 William Ferreira

by taking the contexts:

C

1

def

= [] k n!2:m!:0 and,

C

2

def

= [] k n!1:m!:0

since C

1

[e

1

] #

SG

m!; C

2

[e

2

] #

SG

m! and obviously C

i

[0] 6#

SG

m!. When e

1

and e

2

are combined using

� the pre�x n? becomes a divergence of the process e

1

� e

2

, although it is not a divergence of either

e

1

or e

2

. Let f

even

and f

odd

be the functions which converge for even and odd values respectively,

and diverge otherwise. From the de�nition of �

On Testing the Observable Actions of Processes 25

Then the term:

M

fe

A

j A 2 Ag

is in head normal form if each e

A

is the simple sum form:

X

fe

a

j a 2 Ag

where

M

denotes the application of the operator � to a non-empty, �nite set of expressions, and

P

On Testing the Observable Actions of Processes 27

� s = n?v:s

0

{ this case is simpler than the case s = n!v:s

0

.

2

Lemma 6.6.

28 William Ferreira

and for each d 2 SG and s 2 Act

�

let A

S

(d; s) denote the obvious extension of the acceptances of

d after s to elements of SG.

Definition 6.8. For d

1

; d

2

2 SG and s 2 Act

�

let d

1

�

SG

d

2

if d

1

+ s implies:

� d

2

+ s,

� D(d

2

; s) � D(d

1

; s) and,

� A

S

(d

2

On Testing the Observable Actions of Processes 29

Proof. Since e +

G

s we have e �

G

hnf (e) and SG[[e]] = SG[[hnf (e)]], so it is su�cient to show

that:

c

D(hnf (e);s)

(A

S

(hnf (e); s)) = A

S

(SG[[hnf (e)]]; s)

The proof is by induction on s, and follows from lemma 6.10, the structure of head normal forms

and the interpretations of the operators �;+ and �: in SG. 2

We can now present our �nal result:

Theorem 6.14. For e

1

; e

2

2 VPL we have:

e

1

@

On Testing the Observable Actions of Processes 31

[Plo81b] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19,

Computer Science Dept, Aarhus University, Denmark, 1981.

[San92] Davide Sangiorgi. Expresing Mobility in Process Algebras: First Order and Higher-Order Paradigms. Ph.D.

thesis, LFCS, Edinburgh University, 1992.

32 William Ferreira

A Interpretation of the remaining operators of VPL in G and SG.

Let rename

G

be de�ned byrename

