
Loal �-Calulus at Work:

Mobile Objets as Mobile Proesses

1

Massimo Merro

2

COGS, University of Sussex, United Kingdom

Josva Kleist

3

INRIA, Sophia-Antipolis, Frane

Uwe Nestmann

EPF, Lausanne, Switzerland

February 7, 2001

1

An extended abstrat has appeared in Proeedings of IFIP TCS 2000, volume 1872 of Leture Notes

in Computer Siene. Springer Verlag, August 2000.

2

Partly supported by Marie Curie fellowhip, EU-TMR, No. ERBFMBICT983504.

3

Partly supported by Danish National Researh Foundation grant SNF-28808

Abstrat

Obliq is a lexially-soped, distributed, objet-based programming language. In Obliq, the mi-

gration of an objet is proposed as reating a lone of the objet at the target site, whereafter

the original objet is turned into an alias for the lone. Obliq has only an informal semantis,

so there is no proof that this style of migration is safe, i.e., transparent to objet lients. In

previous work, we introdued �jeblik, an abstration of Obliq, where, by lexial soping, sites

have been abstrated away. We used �jeblik in order to exhibit how the semantis behind Obliq's

implementation renders migration unsafe. We also suggested a modi�ed semantis that we on-

jetured instead to be safe. In this paper, we rewrite our modi�ed semantis of �jeblik in terms

of �-alulus, and we use it to formally prove the orretness of objet surrogation, the abstration

of objet migration in �jeblik.

Aliasing Semantis In [NHKM00℄, we gave several proposals of on�guration-style semantis

for �jeblik. One of them �ts the Obliq implementation [Car94, Car95℄, but does not guarantee the

orretness of objet surrogation as

Channels: 2 C Values

Keys: k 2 K v ::= x variable

Names: 2 N j ` v variant

n ::= j k j h v

1

. . v

n

i tuple

Auxiliary: u 2 U Types

Variables: 2 X T ::= C(T) hannel type

x ::= n j u j K key type

j [`

1

:T

1

; : : : ; `

m

:T

m

℄ variant type

Labels 2 L j hT

1

. .T

m

i tuple type

`; `

1

; `

2

; : : : j X type variable

j �X .T reursive type

Proesses

P ::= 0 nil proess

j (x).P single input

j v output

j P

1

j P

2

parallel

j (�n:T)P restrition

j ! (x).P repliated input

j if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

key testing

j ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

variant destrutor

j let (x

1

. .x

m

) = v in P tuple destrutor

j wrong run time error

The loality onstraint requires that in (single and repliated) inputs and in

(variant and tuple) destrutors the bound names x; x

1

; : : : ; x

m

must not be

used in free input position within the respetive sope P; P

1

; : : : ; P

m

.

Table 1: The Calulus L�

+

reasoning about, onurrent objet-oriented languages. In partiular, we an easily guarantee the

uniqueness of objet identities|a fundamental feature of objets: in objet-oriented languages,

the name of an objet may be transmitted; the reipient may use that name to aess the methods

of the objet, but it annot reate a new objet with the same name. When representing objets

in the �-alulus, this translates diretly into the onstraint that the proess reeiving an objet

name may only use it in output ations|a guarantee in our setting.

2.1 Terms and Types

In Table 1, we introdue the alulus L�

+

, a typed version of polyadi L� with: (i) labelled

values ` v, alled variants [San98℄, with ase analysis; (ii) tuple values h v

1

. . v

n

i, with pattern

mathing, (iii) onstants k, alled keys, with equality; (iv) a wrong onstrut to model run-time

typing errors.

We introdue a few syntati ategories: the set X of variables inludes the set N of names

(onstants and variables) onsisting of the two disjoint sets C of hannels and K of keys. The

auxiliary variables in the set U are variables for omplex values. L is the set of labels. In addition

to the metavariables mentioned in the grammar, we let s; p; q; r;m; t range over hannels, y over

variables, w over values, Q over proesses, and i; j; d; h;m over tuple, variant, or other indies. We

abbreviate ` hi and ` () as `, as well as qhi and q().P as q and q.P , respetively, while ev denotes

3

a sequene v

1

. . v

m

.

Restrition, both inputs, and both destrutors are binders for the names x; x

1

; : : : ; x

m

in the

respetive

(Inp)

�

(x).P

v

���! Pf

v

=

x

g

(Rep)

�

! (x).P

v

���! Pf

v

=

x

g j ! (x).P

(Out)

�

v

v

���! 0

(Open)

P

(�eq:

e

T) v

��������! P

0

n2 n(v)nfeq; g

(�n:T)P

(�n:T ;eq:

e

T) v

�����������! P

0

(Com)

P

1

(�eq:

e

T) v

��������! P

0

1

P

2

v

���! P

0

2

eq \ fn(P

2

) = ;

P

1

j P

2

�

��! (�eq:

e

T) (P

0

1

j P

0

2

)

(Par)

P

1

�

��! P

0

1

bn(�) \ fn(P

2

) = ;

P

1

j P

2

�

��! P

0

1

j P

2

(Res)

P

�

��! P

0

n 62 n(�)

(�n:T)P

�

��! (�n:T)P

0

(Test-1)

P

1

�

��! P

0

1

k

1

= k

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

1

(Test-2)

P

2

�

��! P

0

2

k

1

6= k = k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

2

(Test-3)

P

3

�

��! P

0

3

k

1

6= k 6= k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

3

(Case)

P

j

f

v

=

x

j

g

�

��! Q j 2 1 . .m

ase `

j

v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

�

De�nition 2.9 (Typed bisimilarity) Typed bisimilarity, is the largest typed relation S suh

that (�;P ;Q) 2 S implies:

1. If P

�

��! P

0

, then there exists Q

0

s.t. Q =) Q

0

and (�;P

0

;Q

0

) 2 S.

2. If P

(�en:

e

T) v

��������! P

0

, with en \ fn(Q) = ;, then there exists Q

0

suh that Q

(�en:

e

T) v

========) Q

0

and

((�; en:

e

T);P

0

;Q

0

) 2 S.

3. If

(i) � is a losed extension of �,

(ii) � ` :C(T) and � ` v:T ,

(iii) P

v

���! P

0

, with f(v) \ f(P j Q) = ;,

then there exists Q

0

suh that:

(i) either Q

v

a; b ::= O objet

j a.lh a

1

. . a

n

i method invoation

j a.l(m method update

j a.lone shallow opy

j a.aliashbi objet aliasing

j a.surrogate objet surrogation

j a.ping objet ping

j s; x; y; z variables

j letx:A=a in b loal de�nition

j forkhai thread reation

j joinhai thread destrution

O ::= [l

j

=m

j

℄

j2J

objet reord

m

j

::= &(s

j

:A; ~x

j

:

e

B

j

)b

j

method

A;B ::= [l

j

:

e

B

j

!

b

B

j

℄

j2J

objet reord type

j Thr(A) thread type

Table 4: �jeblik Syntax and Types

we show that the relation

S = f

�

pv j R ; (�r:C(T)) (pw j r . q) j R

�

g [

_

�

=

is a barbed bisimulation up to �. The requirements on the barbs are easily satis�ed. As for the

bisimulation game on silent moves, the only interesting ase is when there is a ommuniation

along p, that is, when R

p(x)

����!R

0

. In this ase we get, up to strutural equivalene, the pair of

proesses

�

Qf

q

=rg ; (�r:C(T)) (Q j r . q)

�

where Q = R

0

f

w

=xg. By Lemma 2.14 we an onlude.

2

3 �jeblik: A Conurrent Objet Calulus

In this setion, we present �jeblik [NHKM00℄, a typed abstration of Obliq designed to study

objet migration. �jeblik-expressions and �jeblik-types are generated by the grammar in Table 4,

where a ranges over �jeblik-terms, l over method labels, m over method bodies, s; x; y; z over

variables, O over objet reords, and A;B over types. The type language extends the one of

the imperative objet alulus [AC96℄ by thread types Thr(A). Pairs ~x

j

:

e

B

j

denote sequenes

x

1

j

:B

1

j

. .x

n

j

:B

n

j

. Funtion types A!B do only our in objet types [l

j

:

e

B

j

!

b

B

j

℄

j2J

, so they are

not �rst-lass types. Yet, we sometimes abbreviate suh objet types by [l

j

:A

j

℄

j2J

to larify that

a type is not a thread type. Typed terms are de�ned by adding type annotations to all binding

ourrenes of variables: in let-expressions and in method delarations.

For the sake of simpliity, ompared to Obliq, in �jeblik we omit ground values (like numbers,

booleans, strings, et.), data operations, and proedures, we restrit �eld seletion to method

invoation, we restrit multiple loning to single loning, we omit exibility of objet attributes,

we replae �eld aliasing with objet aliasing, we omit expliit distribution, and we omit exeptions

and advaned synhronisation, so we get a feasible, but still non-trivial language. As in Obliq,

omputation follows the all-by-value evaluation order. In partiular, in the following, whenever

we use a term a, we impliitly assume that we have �rst evaluated a to some atual value, i.e. in

most ases to an objet referene.

10

Objets

An objet reord [l

j

=m

j

℄

j2J

is a �nite olletion of updatable named methods l

j

=m

j

, for pairwise

distint

(T-Var)

�(x) = A

� ` x:A

(T-Let)

� ` a:A �; x:A ` b:B

� ` letx:A=a in b : B

(T-Fork)

� ` a:A

� ` forkhai : Thr(A)

(T-Join)

� ` a : Thr(A)

� ` joinhai : A

(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

` b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Inv)

� ` a : [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

e

b

k

:

e

B

k

k2J

� ` a.l

k

h

e

b

k

i :

b

B

k

(T-Upd)

� ` a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s:A; ~x:

e

B

k

` b:

b

B

k

k2J

� ` a.l

k

(&(s:A; ~x:

e

B

k

)b : A

(T-Ping)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.ping : A

(T-Clo)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.lone : A

(T-Ali)

� ` a; b:A A = [l

j

:A

j

℄

j2J

� ` a.aliashbi : A

(T-Sur)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.surrogate : A

Table 5: Typing Rules for �jeblik

semantis of alias nodes. We address the reader to [NHKM00, Mer00℄ for a full explanation aboutj

By alling x.lhxi, the aliasing operation x.aliashxi is arried out giving rise to the yli alias

hain x�x. As a onsequene, the following external method all x.k will give rise to a diverging

omputation.

4.3 On forwarding requests within alias nodes

In this setion, we desribe the behaviour of single alias nodes in �jeblik by addressing four ruial

questions.

1. What is the urrent self of forwarded requests?

2. Who is in harge of sending the result of a forwarded external request?

3. When does the forwarding take plae?

4. Whih requests are forwarded and whih requests fail in an alias node?

Our semantis behaves as follows:

What? Let a be an alias node forwarding requests to b, that is, a�b. Let be a third objet

invoking a method of a. Then, when serving the (external) request, the alias a simply forwards

the request to b, and is still the urrent self. Roughly speaking, it is as if invokes diretly a

method of b. The self-inited ase is trivial beause then a = .

Who? As above, let a�b and be a third objet invoking a method of a. Sine alias nodes simply

forward requests unhanged, also the transmission of the result of the request is delegated to b. As

a onsequene: should the request in a have required a mutex, then the mutex an already be

released one the request has been forwarded to b.

When? When addressed to stable alias nodes, inoming external requests do not have to wait

until previously forwarded requests (there an only be external ones in this ase) have suessfully

signalled termination from their point of ation. However, when addressed to unstable alias nodes,

inoming external requests must wait for the termination of previous (external and self-inited)

requests.

Whih? Proteted external requests are supposed to fail only when addressed to non-aliased

nodes, thus only in endpoints of alias hains.

� Method invoations (as well as pings and surrogations) are always forwarded (by transitivity

to the endpoint of the hain, if it exists).

� Self-inited loning and self-inited aliasing are performed at the alias node; external

loning and external aliasing are forwarded beause they an possibly reah another node in

the alias hain where they are self-inited and therefore exeutable.

� Self-inited update requests are forwarded. External update requests are forwarded beause

they may reah a (non-aliased) objet that serves them.

5 A translational semantis for �jeblik

In this setion we give a translational semantis of �jeblik into L�

+

aording to the informal

semantis given in Setions 3 and 4. In addition to the syntax of L�

+

we use standard abbreviations

for:

� polyadi input a(x

1

. .x

n

).P

def

= a(y).let (x

1

. .x

n

)= y inP where y 62 fn(P). We will also

write C(T

1

. .T

n

) instead of C(hT

1

. .T

n

i) denoting the type of a hannel arrying a tuple.

� polyadi ase destrutor ` (x

1

. .x

n

):P

def

= ` (y):let (x

1

. .x

n

)= y inP , where y 62 fn(P);

15

[[a.lone ℄℄

k

p

def

= (�q)

�

[[a ℄℄

k

q

�

�

q(y; k

0

) . yhln p; k

0

i

�

[[a.aliashbi ℄℄

k

p

def

= (�q

x

q

y

)

�

[[a ℄℄

k

q

y

�

�

q

y

(y; k

y

).([[b ℄℄

k

y

q

x

j q

x

(x; k

x

) . yhali hx; pi; k

x

i)

�

[[a.l

j

(&(s; ~x)b ℄℄

k

p

def

= (�q)

�

[[a ℄℄

k

q

�

�

q(y; k

0

).(�t)

�

! t(s; ex; r; k).[[b ℄℄

k

[[O ℄℄

k

p

def

= (�s

e

t)

�

phs; ki

�

�

newO

O

h s;

e

t i

�

�

Q

j2J

! t

j

(s

j

; ex

j

; r; k

0

).[[b

j

℄℄

k

0

r

�

newO

O

h s;

e

t i

def

= (�m

e

m

i

k

e

k

i

)

�

m

e

�

�

OM

O

h s;m

e

;m

i

; k

e

; k

i

;

e

t i

�

newA

O

h s; s

a

i

def

= (�m

e

m

i

k

e

k

i

)

�

m

e

�

�

AM

O

h s;m

e

;m

i

; k

e

; k

i

; s

a

i

�

OM

O

h s; em; k

e

; k

i

;

e

t i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of ln (r) :OM

O

h s; em; k

e

; k

�

;

e

t i j (�s

�

)

�

rhs

�

; k

�

i j newO

O

h s

�

;

e

t i

�

;

ali (s

a

; r) :AM

O

h s; em; k

e

; k

�

; s

to retrieve the value of a fork'ed term a, but we used it to send the result hannel of the join'ing

term, together with its urrent key|this is preisely represented in the translation of Thr(A).

Aording to the translation of types, we an add type delarations in a straightforward way

to all bindings in the translation of terms, as mentioned, although omitted, in Setion 5.

Types witness the lean representation of �jeblik terms as �-alulus terms.

Theorem 6.1 (Type Soundness) Let a 2 L, let � be a type-environment, and let A be a type.

Then � ` a:A if and only if [[� ℄℄ ; p:R([[A ℄℄) ; k:K ` [[a ℄℄

k

p

for names p and k.

Proof. The impliation from left to right is proved using indution in the depth of the derivation

of � ` a:A with a ase analysis of the last rule used. The impliation from right to left is proved

by indution in the struture of a. Details an be found in Appendix A.2.

2

In addition to the initial orrespondene of types in �jeblik and their �-alulus ounterparts,

the preservation of types under redution in the �-alulus provides us for free with preservation of

�jeblik types, thus witnessing the subjet redution theorem based on the operational

Proof. By inspetion of the enoding. If a manager is present, it must have been reated at some

point as desribed in the enoding, beause initially, there is none. Upon reation, its name

where the keys mentioned in ev of PP

O

h : : : i neither math k

e

nor k

i

. Notie that

newO

O

h s;

e

t i � (�k

i

) freeO

O

h s; k

i

;

e

t; ; i, and analogously for newA

O

h : : : i.

Observation

C[�℄ ::= [�℄ j [l

k

=&(s; ex)C[�℄ ; l

j 6=k

=m

j 6=k

℄

j2J

j C[�℄.lh ~a i j a.lh ~a; C[�℄; ~a i

j C[�℄.l(m j a.l(&(s; ex)C[�℄

j C[�℄.aliashbi j a.aliashC[�℄i

j C[�℄.lone

j C[�℄.surrogate j C[�℄.ping

j letx=C[�℄ in b j letx=a inC[�℄

j forkhC[�℄i j joinhC[�℄i

Table 9: �jeblik ontexts

adds one unonditional step after reduing a) and that the notion of equivalene takes all �jeblik

ontexts into aount, Equation 1 an be redued to the problem of surrogation on variables:

x

.

= x.surrogate (2)

However, there is an inherent problem with Equation 2,

7.2 On the absene of self-inited surrogation

One of the main observations in [NHKM00℄ was that the safety equation an not hold in full

generality for �jeblik-ontexts, in whih the operation x.surrogate

[[[a.surrogate

?

℄℄℄

k

p

def

= (�q)

�

[[[a ℄℄℄

k

q

j q(y; i) . yhsur

?

p; ii

�

[[[a.ping

?

℄℄℄

k

p

def

= (�q)

�

[[[a ℄℄℄

k

q

j q(y; i) . yhpng

?

p; ii

�

OM

?

O

h s; em; k

e

; k

i

;

e

t i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of : : : : : : :

sur (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s.aliashs.lonei ℄℄℄

k

�

r

;

png (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s ℄℄℄

k

�

r

;

sur

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s.aliashs.lonei ℄℄℄

k

�

r

;

png

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[s ℄℄℄

k

�

r

elif

ompares the onvergene behaviour of a tagged term and its untagged ounterpart with respet

to the tagged semantis. By de�nition, the tagged semantis treats tagged and untagged requests

in exatly the same manner.

2

Tagging helps us to detet all \requests arising from the hole".

De�nition 7.4 (External Contexts) Let x be a variable and C[�℄ an untagged �jeblik ontext.

Then, C[�℄ is alled external for x.surrogate, if whenever

[[[C[x.surrogate

?

℄ ℄℄℄

k

p

=)

�

E[shsur

?

r; ki j OM

?

O

h s; em; k

e

; k

i

;

e

t i ℄

it holds that k 6= k

i

.

We replay the de�nition using ping instead of surrogate. By de�nition of the semantis, an �jeblik

ontext C[�℄ is then external for x.surrogate if and only if it is external for x.ping. For onveniene,

by abuse, we simply all C[�℄ to be external for x.

8 On the safety of surrogation

In this setion, we prove that that

C[x.ping℄+ i� C[x.surrogate℄+

under the assumption that C[�℄ will never lead to

By (the tagged ounterpart of) Lemma 6.6 it holds that:

P

h

� (�ez

h

)

�

M

h

j surO

?

O

h s

h

; q

h

; k

h

;

e

t

h

; ev

h

i

�

for some ez

h

and M

h

. Now, we simulate the previous redution sequene, whih uses sur

?

-requests,

but now using png

?

-requests and proeeding up to strutural equivalene and barbed equivalene.

D[yhpng

?

q; ji℄ =

Q

1;1

�!

i

Q

1;2

�!

i

� � � �!

i

Q

1;n

1

�!

s

Q

1

'

�

b

Q

1

� Q

2;1

Q

2;1

�!

i

Q

2;2

�!

i

� � � �!

i

Q

2;n

2

�!

s

Q

2

'

�

b

Q

2

� Q

3;1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Q

d;1

�!

i

Q

d;2

�!

i

� � � �!

i

Q

d;n

d

�!

s

Q

d

'

�

b

Q

d

� Q

d+1;1

Q

d+1;1

�!

i

Q

d+1;2

�!

i

� � � �!

i

Q

d+1;n

d+1

def

= Q#

p

where:

Q

h;g

def

= P

h;g

[

png

?

=

sur

?

℄

The insigni�ant redution steps �!

i

exist beause of Lemma 8.8. The signi�ant redution

steps

(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

`

A

b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

D

[l

j

: &(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Upd)

� `

D

a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s

k

:A; ~x

k

:

e

B

k

`

A

b

k

:

b

B

k

k2J

� `

D

a.l

k

(&(s

k

:A; ~x

k

:

e

B

semantis for �jeblik, the question for some formal orrespondene result among the semantis by

translation and the diret semantis arises. On the other hand, one may ask to arry out the proofs

on the diret semantis instead of employing some other lower-level formalism. However, we found

it very natural and useful to develop two semantis at di�erent abstration levels hand-in-hand.

In fat, most of the examples of unsafe surrogation were disovered by means of the �-alulus

semantis, and only then \veri�ed" in the diret semantis. Moreover, sine we have developed

both levels of semantis in lok-step, we have a good basis for formalizing their interrelation.

Finally, in ontrast to our abstrat on�guration-style semantis for losed terms only, the �-al-

ulus provides indeed a very rih set of approved reasoning tools that make the life of a theorem

prover muh easier, as exempli�ed by Kleist and Sangiorgi [KS98℄, and also in this paper.

Other strands of future work are twofold. One is to ontinue to develop and exploit semantis

for the Obliq-style of objet migration, and to use our semantis also to prove other equations

on Obliq-programs. For example, also equations like joinhforkhaii=a do only hold under ertain

onditions inited by self-inition. Another strand is to try to arry over our results to settings

that are not based on the notion of serialization via self-inition, but rather reentrant mutexes,

as in Java.

Aknowledgements

We thank Lua Cardelli for several useful disussions on Obliq. We also thank Giuseppe Castagna,

Roo De Niola, Joahim Parrow, and Davide Sangiorgi for omments on an early draft.

33

A Proofs

A.1 Proof of Lemma 2.14

Proof. We show that the relation

S = f

�

Qf

p

=qg ; (�q:C(T)) (Q j q . p)

�

: q in Q only in output positiong

is a barbed bisimulation up to strutural equivalene.

� Let Qf

p

=qg

�

��!Q

0

f

p

=qg. There are two ases.

1. Q

�

��!Q

0

. This ase an be easily treated.

2. Otherwise, sine p and q are hannels and they never appear in testing, this means

that the � -ation is due to a ommuniation along p. More preisely, Q must ontain

an ourrene of q in output subjet position and an ourrene of p in input position

whih give rise to the ommuniation. Up to strutural equivalene, this implies that

(�q:C(T)) (Q j q . p)

�

��!

�

��! � (�q:C(T)) (Q

0

j q . p).

As desired.

� Let (�q:C(T)) (Q j q . p)

�

��!R for some R. There are two ases.

1. R = (�q:C(T)) (Q

0

j q . p) sine Q

�

��!Q

0

. This ase an be easily treated.

2. The � -ation is due to some ommuniation along q between Q and the link q . p. More

preisely,

Before we start, let

A

�

(X) denote

2

6

6

6

6

6

6

4

ln : R(X)

ali : hX;R(X) i

upd

j

: hC(X;M(

e

B

j

!

b

B

j

);K);R(X) i

inv

j

: hM(

e

B

j

!

b

B

j

) i

sur : R(X)

png : R(X)

3

7

7

7

7

and in order to type the objet manager we must also have K = J in order to have the same

number of methods in the type and the objet manger. The typing of the objet manger

also yields that we must have the types T

j

= C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

In state OM

s

, a png request drives the system into state OM

i

. In the ase of method invoation

a redution along t

j

may our whih allows the evaluation of the method body. At this point a

number of self-inited requests may be served (external requests are bloked beause the external

mutex m

e

is no available). This part of the omputation will not hange the state. Notie that,

by hypothesis, sine we suppose that Z ontain an objet manager and non an alias manager,

we exlude self-inited aliasing operations. When the last self-inited request is served, a reply

r

�

h o; k i will appear unguarded. The onuent redution along r

�

will drive the omputation to

state OM

i

. sur requests are treated similarly.

State OM

i

an only evolve, by reduing along m

i

, to state OM

f

.

2

A.4 Proof of Lemma 8.2

We show that there is a sequene of � -ations suh that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

We prove that �

�;s

is insensitive to these partiular � -ations. To this end, we supply the two

lemmas A.2 and A.3. We reall that CM[�℄ denote the all manager protool as de�ned in Table 7.

Lemma A.2 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1.n, and

C

1

:= CM[(�q) (shln q; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

C

2

:= CM[(�q) (qhs

�

; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

P hevi := (�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

2

�

with k

�

62 fn(ev)

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. For simpliity, we omit the obligations on types in the oindutive de�nition of �

�;s

.

So, we prove that the relation:

S = f(P h ewi; Qh ewi) : ew = w

1

. .w

m

with w

j

:= h l

j

; k

j

i; j 2 1. .ng [I

where I is the identity relation, is a �

�;s

-bisimulation up to �.

The only hannel whih appear free in subjet position in P h ewi and Qh ewi is s. Sine both the

external key k

e

and the internal key k

�

are restrited in P h ewi and Qh ewi, an by well-typedness,

the environment an send requests only of the form shl; ki with k

e

6= k 6= k

�

.

The proess P h ewi an perform only two kinds of ations. Either (i) an input ation shl; ki (with

k

e

6= k 6= k

�

), or (ii) a silent move along s involving the self-inited loning request ontained

in C

1

. In ase (i), the pre-proessing of the request reates the proess m

e

.(shl; k

e

i j m

i

k) whih

an be added in PP

O

h s; en; ew i obtaining some PP

O

h s; en;

f

w

0

i with

f

w

0

= ew [hl; ki. The proess

Qh ewi an perform the same ation and the derivatives are again related by S. In ase (ii), the

proess Qh ewi an mimi the � -ation by not performing any redution at all. Up to strutural

equivalene, we get into the identity relation.

The proess Qh ewi an only perform two kinds of ations. Either (i) a input ation shl; ki (with

k

e

6= k 6= k

�

), and we reason as above, or (ii) a silent move along the restrited hannel q in C

2

. In

this ase P h ewi an perform two silent ations, along s and q, getting, up to strutural equivalene,

into the identity relation.

2

Lemma A.3 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1. .n, and

38

C

3

:= CM[shali hs

�

; r

�

i; k

�

i ℄

C

4

:= CM[r

�

hs

�

; k

�

i ℄

P hevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

with k

�

62 fn(ev).

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. Similar to that of Lemma A.2.

2

Proof of Lemma 8.2. As said above there is a sequene of � -ations, suh that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

The above sequene onsists of 7 silent steps. These � -steps are of two kinds: (i) onuent

redutions along restrited hannels of the form

C[(�q) (qhevi j q(ex).P)℄

�

��!

�

C[Pf

ev

=

ex

g℄

where q 62 fn(P), let us all these redutions of kind �; (ii) redutions involving self-inited

requests (indued by the surrogation) of the form

C[(�k

�

) (OM

O

h s; em; k

e

; k

�

;

where k

�

62 fn(ev).

In the �fth � -step we redue the self-inited aliasing request ontained in C

3

. So, let us denote

with C

4

the proess CM[r

�

hs

�

; k

�

i ℄. It holds that the proess

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

redues, up to strutural equivalene, to

(�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

where k

�

62 fn(ev). By Lemma A.3 the relation �

�;s

is insensitive to this redution.

The sixth and the seventh redutions are of kind � and involve hannels r

�

andm

i

, respetively.

Up to strutural equivalene we get the desired proess

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

2

A.5 Proof of Lemma 8.3

Lemma 8.3 proves that the aliased objet manager appearing in Lemma 8.2 behaves as a forwarder.

As a �rst step we reall a well-known property of repliated input.

Lemma A.4 Let C[�℄ be a �-alulus ontext where hannel does not appear either in input or

in output objet position. Then

(�)

�

! (x).P

�

�

C[v℄

�

�

�

(�)

�

! (x).P

�

�

C[Pf

v

=

x

g℄

�

Proof. By applying Milner's repliations theorems [Mil93℄.

2

Proof of Lemma 8.3. The obligations on types guarantee that values reeived along hannel

s are of the right type. This allows us to use polyadi input along s. By observing proess

(�k

i

)AM

O

h s; em; k

e

; k

i

; s

�

i we note that, sine k

i

is restrited and never extruded, the aliased objet

manager will never reeive self-inited requests. By exhibiting the appropriate bisimulation, we

an prove that suh a proess has the following funtional behaviour.

(�k

i

) (AM

O

h s; em; k

e

; k

i

; s

�

i) �

�

! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

Sine �

�

is preserved by parallel omposition and restrition, we have that:

(�k

i

) (freeA

O

h s; k

i

; s

�

; ev i)

�

�

(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(self-inited)Tj
55.8 0 Td
(requests.)Tj
42.9602 0 Td
(By)Tj
15.8398 0 Td
(exhibiting)Tj
46.9194j
/R223 0.12 Tf
5.51(paralle8-g)T1
/H 1
/BPC 1
ID �
EI Q
q
10 0 0 10 0 0 m BT
/R223 0.12 Tf
1 0 0 -1 394.56 300.22 Tm
(s)T6(h)T2 0.12 Tf
8.68008 -2.88008 Td
(�)Tj47R380 0.12 Tf
4.68008 2.88008 Td
(h)TTj
/R23 0.12 Tf
3.83984 0 Td
[(l)-1998.7(;)-13998.6(k)℄TJ
/R380 0.12 Tf
13.1996 0 Td
(i)Tj
6.6 0 Td
(j)Tj
ET
Q
q 181 0.12 Tf
0 -4.8 4438.68 3180.88 m
BI04
/R17ue
/W 1
/H 1
/BPC 1
ID �
EI Q
q
10 0 0 10 0 0 m BT
/R223 0.12 Tf
1 0 0 -1 212.04 233.5 Tm
(m)TI04.a

e

)

else m

e

.(

hl; k

e

)

i

kself-inited)

(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

j

Q

j21..n

m

e

.

�

shl

j

; k

e

i j m

i

k

j

� �

�

�;s

(by exhibiting the appropriate bisimulation)

(� ems

e

)

�

m

e

j ! s(l; k).m

e

.(s

e

hl; ki j m

i

k)

j ! s

e

(l; k).m

i

(k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.(s

e

hl

j

; k

j

i j m

i

k

j

)

�

�

�

(redutions on m

i

are onuent)

(�m

e

s

e

)

�

m

e

j ! s(l; k).m

e

.s

e

hl; ki

j ! s

e

(l; k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.s

e

hl

j

; k

j

i

�

�

�

(by Lemma A.4)

(�m

e

s

e

)

�

m

e

j ! s(l; k).m

e

.

�

s

�

hl; ki j m

e

�

j ! s

e

(l; k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.(s

�

hl

j

; k

j

i j m

e

)

�

�

�

(by garbage olletion on s

e

)

(�m

e

)

�

We reall that �

�;s

is ground on hannels. This means that we alway suppose to reeive fresh

hannels, in partiular, we never reeive hannels s and s

�

.

3. If (�ez) (A j R)

�

��!(�ey) (A

0

j R

0

), where the � -ation

Referenes

[AC96℄ M. Abadi and L. Cardelli. A Theory of Objets. Monographs in Computer Siene. Springer, 1996.

[ACS98℄ R. M. Amadio, I. Castellani and D. Sangiorgi. On Bisimulations for the Asynhronous �-Calulus.

Theoretial Computer Siene, 195(2):291{324, 1998. An extended abstrat appeared in Proeedings

of CONCUR '96, LNCS 1119: 147{162.

[Bou92℄ G. Boudol. Asynhrony and the �-alulus (Note). Rapport de Reherhe 1702, INRIA Sophia-

Antipolis, May 1992.

[Car94℄ L. Cardelli. obliq-std.exe |Binaries for Windows NT. http://www.lua.demon.o.uk/Obliq/Obliq.

html, 1994.

[Car95℄ L. Cardelli. A Language with Distributed Sope. Computing Systems, 8(1):27{59, 1995. Short version

in Proeedings of POPL '95. A preliminary version appeared as Report 122, Digital Systems Researh,

June 1994.

[DF96℄ P. Di Blasio and K. Fisher. A Conurrent Objet Calulus. In U. Montanari and V. Sassone, eds,

Proeedings of CONCUR '96, volume 1119 of LNCS, pages 655{670. Springer, 1996. An extended

version appeared as Stanford University Tehnial Note STAN-CS-TN-96-36, 1996.

[FG96℄ C. Fournet and G. Gonthier. The Reexive Chemial Abstrat Mahine and the Join-Calulus. In

Proeedings of POPL '96, pages 372{385. ACM, Jan. 1996.

[GH98℄ A. D. Gordon and P. D. Hankin. A Conurrent Objet Calulus: Redution and Typing. In U. Nestmann

and B. C. Piere, eds, Proeedings of HLCL '98, volume 16.3 of ENTCS. Elsevier Siene Publishers,

1998.

[GHL97℄ A. D. Gordon, P. D. Hankin and S. B. Lassen. Compilation and Equivalene of Imperative Objets. In

S. Ramesh and G. Sivakumar, eds, Proeedings of FSTTCS '97, volume 1346 of LNCS, pages 74{87.

Springer, De. 1997. Full version available as Tehnial Report 429, University of Cambridge Computer

Laboratory, June 1997.

[HK96℄ H. H�uttel and J. Kleist. Objets as Mobile Proesses. Researh Series RS-96-38, BRICS, Ot. 1996.

Presented at MFPS '96.

[HKMN99℄ H. H�uttel, J. Kleist, M. Merro and U. Nestmann. Migration = Cloning ; Aliasing (Preliminary Ver-

sion). In Informal Proeedings of the Sixth International Workshop on Foundations of Objet-Oriented

Languages (FOOL 6, San Antonio, Texas, USA). Sponsored by ACM/SIGPLAN, 1999.

[Hon92℄ K. Honda. Two bisimilarities for the �-alulus. Tehnial Report 92-002, Keio University, 1992.

[HT91℄ K. Honda and M. Tokoro. An Objet Calulus for Asynhronous Communiation. In P. Ameria, ed,

Proeedings of ECOOP '91, volume 512 of LNCS, pages 133{147. Springer, July 1991.

[HY95℄ K. Honda and N. Yoshida. On Redution-Based Proess Semantis. Theoretial Computer Siene,

152(2):437{486, 1995. An extrat appeared in Proeedings of FSTTCS '93, LNCS 761.

[JLHB88℄ E. Jul, H. Levy, N. Huthinson and A. Blak. Fine-Grained Mobility in the Emerald System. ACM

Transations of Computer Systems, 6(1), Feb. 1988.

[KS98℄ J. Kleist and D. Sangiorgi. Imperative Objets and Mobile Proesses. In D. Gries and W.-P. de

Roever, eds, Proeedings of PROCOMET '98, pages 285{303. International Federation for Information

Proessing (IFIP), Chapman & Hall, 1998.

[Mer00℄ M. Merro. Loality in the �-alulus and appliations to distributed objets. PhD thesis, Eole des

Mines, Frane, Otober 2000.

[Mil93℄ R. Milner. The Polyadi �-Calulus: A Tutorial. In F. L. Bauer, W. Brauer and H. Shwihtenberg,

eds, Logi and Algebra of Spei�ation, volume 94 of Series F: Computer and System Sienes. NATO

Advaned Study Institute, Springer, 1993. Available as Tehnial Report ECS-LFCS-91-180, University

of Edinburgh, Otober 1991.

[Mor68℄ J.-H. Morris. Lambda Calulus Models of Programming Languages. PhD thesis, MIT, 1968.

[MS92℄ R. Milner and D. Sangiorgi. Barbed Bisimulation. In W. Kuih, ed, Proeedings of ICALP '92, volume

623 of LNCS, pages 685{695. Springer, 1992.

[MS98℄ M. Merro and D. Sangiorgi. On Asynhrony in Name-Passing Caluli. In K. G. Larsen, S. Skyum and

G. Winskel, eds, Proeedings of ICALP '98, volume 1443 of LNCS, pages 856{867. Springer, July 1998.

[NHKM00℄ U. Nestmann, H. H�uttel, J. Kleist and M. Merro. Aliasing Models for Mobile Objets. Aepted

for Journal of Information and Computation. Available from http://www.s.au.dk/researh/FS/

ojeblik/. An extended abstrat has appeared as Distinguished Paper in the Proeedings of EUROPAR

'99, LNCS 1685, 2000.

[PS96℄ B. C. Piere and D. Sangiorgi. Typing and Subtyping for Mobile Proesses. Mathematial Strutures

in Computer Siene, 6(5):409{454, 1996. An extrat appeared in Proeedings of LICS '93: 376{385.

[PW98℄ A. Philippou and D. Walker. On Transformations of Conurrent Objet Programs. Theoretialextrat

[San98℄ D. Sangiorgi. An Interpretation of Typed Objets into Typed �-Calulus. Information and Com-

putation, 143(1):34{73, 1998. Earlier version published as Rapport de Reherhe RR-3000, INRIA

Sophia-Antipolis, August 1996.

[San99a℄ D. Sangiorgi. The Name Disipline of Uniform Reeptiveness. Theoretial Computer Siene, 221(1{

2):457{493, 1999. An abstrat appeared in the Proeedings of ICALP '97 , LNCS 1256, pages 303{313.

[San99b℄ D. Sangiorgi. The Typed �-Calulus at work: A Proof of Jones's Parallelisation Theorem on Conurrent

Objets. Theory and Pratie of Objet-Oriented Systems, 5(1), 1999. An early version was inluded

in the Informal proeedings of FOOL 4, January 1997.

[San00℄ D. Sangiorgi. Lazy Funtions and Mobile Proesses. In G. Plotkin, C. Stirling and M. Tofte, eds, Proof,

Language and Interation: Essays in Honour of Robin Milner, Foundations of Computing. MIT Press,

May 2000. Available as INRIA Sophia-Antipolis Rapport de Reherhe RR-2515.

[SW01℄ D. Sangiorgi and D. Walker. The �-alulus: a Theory of Mobile Proesses. Cambridge University

Press, 2001. To appear.

[VHB

+

97℄ P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl and R. Sheidhauer. Mobile Objets in Distributed

Oz. ACM Transations on Programming Languages and Systems, 19(5):804{851, Sept. 1997.

[Wal95℄ D. Walker. Objets in the �-alulus. Information and Computation, 116(2):253{271, 1995.

45

Contents

1 Introdution 1

1.1 Previous work . 1

1.2 Contribution . 2

1.3 Related work . 2

2 Loal �: An \Objet-Oriented" �-Calulus 2

2.1 Terms and Types . 3

2.2 Operational and Behavioural semantis . 6

3 �jeblik: A Conurrent Objet Calulus 10

4 Towards a formal semantis for �jeblik 12

4.1 On the stability of alias hains . 13

4.2 Cyli alias hains . 14

4.3 On forwarding requests within alias nodes . 15

5 A translational semantis for �jeblik 15

6 Properties of the translational semantis 21

6.1 The L�

+

-translation preserves well-typedness . 21

6.2 Properties of objet managers . 22

7 Towards a formalization of safe surrogation 24

7.1 Safety as an Equation . 24

7.2 On the absene of self-inited surrogation . 26

8 On the safety of surrogation 28

8.1 On ommitting external surrogations . 28

8.2 External Surrogation is Safe . 29

8.3 Typing for External Surrogation . 31

9 Conlusion 32

A Proofs 34

A.1 Proof of Lemma 2.14 . 34

A.2 Proof of Theorem 6.1 . 34

A.3 Proof of Lemma 6.5 . 37

A.4 Proof of Lemma 8.2 . 38

A.5 Proof of Lemma 8.3 . 40

A.6 Proof of Lemma 8.4 . 41

A.7 Proof of Lemma 8.5 . 42

A.8 Proof of Lemma 8.6 . 43

46

