“. R TSR
9 '
»' i

Llniwd i i Hil el 5

Denotational Semantics for Abadi and
Leino’s Logic of Objects

Bernhard Reus
Jan Schwinghammer

Denotational Semantics for Abadi and Leino’s
Logic of Objects

BOITTITR[TAnd JT13

1 Introduction

When Hoare presented his seminal work aboudxénmatic basis of computer
programming[7], high-level languages had just started to gain broader accep-
tance. While programming languages are evolving ever more rapidly, verifica-
tion techniques seem to be struggling to keep up. For object-oriented languages
several formal systems have been proposed, e.g. [2, 6, 13, 12, 5, 20, 17]. A “stan-
dard” comparable to the Hoare-calculus for imperative While-languages [4] has
not yet emerged. Nearly all the approaches listed above are designed for class-
based languages (usually a sub-language of sequential Java), where method code
is known statically.

One notable exception is Abadi and Leino’s work [2] where a logic for an
object-based language is introduced that is derived from the imperative object
calculus with first-order typesmpc, [1]. In object-based languages, every ob-
ject contains its own suite of methods. Operationally speaking, the store for such
a language contains code (and is thus catliggher-order storg and modularity
is for free simply by the fact that all programs can depend on the objects’ code in
the store. We therefore consider object-based languages ideal for studying mod-
ularity issues that occur also in class-based languages. Class-based programs
can be compiled into object-based ones (see [1]), and object-based languages
can naturally deal with classes defined on-the-fly, like inner classes and classes
loaded at run-time (cf. [14, 15]).

Abadi and Leino’s logic is a Hoare-style system, dealing with partial cor-
rectness of object expressions. Their idea was to enrich object types by method
specifications, also calleansition relations relating pre- and post-execution
states of program statements, ardult specificationslescribing the result in
case of program termination. Informally, an object satisfies such a specification

A= [fi: A myg(y)) By T =M

if it has fieldsf; satisfyingA; and methodsn; that satisfy the transition relation
T; and, in case of termination of the method invocation, their result satBfies
However, just as a method can use Hsdfparameter, we can assume that an
objecta itself satisfiesA in both B; andT; when establishing thak holds fora.
This yields a powerful and convenient proof principle for objécts.

We are going to present a new proof using a (untyped) denotational seman-
tics (of the language and the logic) to define validity. Every program and every
specification have a meaningdanotation Those of specifications are simply
predicates on (the domain of) objects. The properties of these predicates provide

1This also works for class-based languages. But an easier solution for those is to interpret class
specifications as mutually defined predicates over classes (and their class names).

2

a description of inherent limitations of the logic. Such an approach is not new, it
has been used e.g. in LCF, a logic for functional programs [10].

The dificulty in this case is to establish predicates that provide the powerful
reasoning principle for objects. Reus and Streicher have outlined in [16] how
to use some classic domain theory [11] to guarantee existence and uniqueness
of appropriate predicates on (isolated) objects. In an object-calculus program,
however, an object may depend on other objects (and its methods) in the store.
So object specifications must depend on specifications of other objects in the
store which gives rise to “store specifications” (already present in the work of
Abadi and Leino).

For the reasons given above, this paper is not “just” an application of the ideas
in [16]. Much care is needed to establish the important invariance property of
Abadi-Leino logic, namely that proved programs preserve store specifications.
Our main achievement, in a nutshell, is that we have successfully applied the
ideas of [16] to the logic of [2] to obtain a soundness proof that can be used to
analyse this logiand todevelop similar but more powerful program logias
well.

Our soundness proof is not just “yet another proof” either. We consider it
complementary (if not superior) to the one in [2] which relies on the operational
semantics of the object calculus and does not assign proper “meaning” to speci-
fications. Our claim is backed up by the following reasons:

< By using denotational semantics we can introduce a clear notion of validity
with no reference to derivability. This helps clarifyinghat the proof is
actually statingn the first place.

< We can extend the logic easily e.g. for recursive specifications. This has been
done for the Abadi-Leino logic in [8] but for a slightlyfiiérent language with
nominal subtyping.

ab = X variable

| true | false booleans

| ifxthenaelseb conditional

| letx=ainb _ let

[[fi = %" m; = ¢(y))b; =™ object construction

| xf field selection

| xfi=y field update

| xm method invocation
TOIIM. Syntax

recursive specifications can be introduced (Section 6) and discuss the benefits of
the denotational approach (Section 7).

When presenting the language and logic, we deliberately keep close to the
original presentation [2].

2 The Object Calculus

Below, we review the language of [2], which is based on the imperative object
calculus of Abadi and Cardelli [1]. Following [16] we give a denotational se-
mantics in Section 2.2.

2.1 Syntax

Let Var, M and F be pairwise disjoint, countably infinite sets wdriables
method nameandfield namesrespectively. Lek, y range oveiar, letm [V
andf [H. The language is defined by the grammar in Tab. 1.

Variables are (immutable) identifiers, the semantics of booleans and condi-
tional is as usual. The object expressimt x = a in b first evaluates and
then evaluateb with x bound to the result df.

Object constructionf[= x'=>", m; = ¢(y;)b;’=>™ allocates new storage

let construct

- .
_ (p(x),0) if x Cdom(p)

[Xlpo ~ (error,0) otherwise
[true]po = (true, 0)
[false]po = (false o)

11pc™ if [X]po = (true, oY
[if x then by else by]po = Hib.lpo™ if [X]po = (false o'
rror,aY if [X]po = (v, oY for v [BVal
[let x=ainb]po = let (v, = [a]poin [b]p[x := v]a"
[[fi=%=""m= C(Yj)bjjzl"'"ﬁ_-]-PO
_ (o[l := (01,02)]) if x Cdom(p)

We will also use a projection to the part of the store that contains data in
Val only (i.e., forget about the closures that live in the storng), : St — Sty
defined by fivy 0).I.f = o.l.f, whereSty, = Recio.(Reck (Val)). We refer to
Tiva(0) as theflat part of o.

Example 2.1. We extend the syntax with integer constants and operations, and
consider an object-based modelling of a bank account as an example:

acqx) = [balance = 0,
depositl0 = ¢(y)let z=y.balance+10 in y.balance:=z,
interest = ¢(y)let r = x.manager.rate in
let z=y.balanceld100 in y.balance:=Z]

Note how the self parameter y is used in both methods to accebslthace
field. Object acc depends on a “managing” object x in the context that provides
the interest rate, through a fielstanager

components, which will be justified by our semantics.

Intuitively, true andfalse satisfyBool, and an object satisfies the specifi-
cationA = [fi: A", mj:¢(y;)Bj=T;=2™ if it has fieldsf; satisfyingA and
methodsm; that satisfy the transition relatioR; and, in case of termination of
the method invocation, their result satisf®s Corresponding to the fact that a
methodm; can use theelfparametey;, in bothT; andB; it is possible to refer
to the ambient objeat;.

LetI range ovespecification contexts; ¥\, ..., X,:An. A specification con-
text iswell-formedif no variablex; occurs more than once, and the free variables
of A are contained in the s¢k, ..., x-1}. In writing T', xA we will always
assume that does not appear in. Sometimes we writ€for the empty context.
GivenTI’, we write [['] for the list of variables occurring if:

[X:AL, ooy XntAn] = X1, Xn

If clear fr_om context, we use the notati@for a sequencey, ..., X,, and simi-
larly X : Afor xi:Aq, ..., %:An. To make the notions of well-formed specifica-
tions and well-formed specification contexts formal, there are judgements for

« well-formed transition relations:

Xl:---nxn U!

is covariant along method specifications and transition relations, and invariant in
field specifications. Observe that[CA; <: A; in particular impliesx A for
i=12.

In the logic, judgements of the forin C&:A::T can be derived, wheris a
well-formed specification contexd,is an object expressio is a specification,
andT is a transition relation. The rules guarantee that all the free variabkes of
AandT appear inT]. We use the following transition relations in the rules:

Tres(€) =result = e
CTXKIf.allocpe(X) « allocpes{X) CSelpe(X, T) = selyosd X, T)
Toni(fi = %)'=>" = —allocyre(result) [Allocyes(result)
[TK]If.x Crdsult -
(allocpre(X) « allocpesdX) CSlgre(X,) = selpos(X,))
[sélyosdresult, f;) = x; 1 Csélyos{result, fy) = X,
Tupa(X, f,€) = XTallocye(X) « allocys(X) [SRlpos(X, f) = €
CIKY f XX IV ET) - selpe(XS T = selpos(X £
[C9.963 Tf 5.539 0 Td[(].)-310(W)80(e)-250(use)-250(the)-250s 3825039]TJ/F104 n Td[LiTO Td[(].)- 5.9u.Td

subsumption
] CA<:A” T [ZA:T [[] AV [[] 17 [T - T7

I C&AYTH
variable
I' Cdk xAInT
I XA:Tes(X)
booleans
I' Cdk I' Cdk
I' [(False:Bool:Ts(false) I' (firue:Bool: Tes(true)
conditional
Altrue/X] = Atrue/x] and Alfalse/X] = A¢[false/X]
T[true/x] = T¢[true/x] and T[false/x] = T;[false/X]
I XBook:Tes(X) T C&A::T, T [B:A::Tt
I' Cif x then aelse b:A:T
let
I @AZTY I xAPEB:T™ [B [I] CT
Lol T Pseline(r,)/s€lpos(’,), allocin(-)/allocpes(:), X/result]
CTPselin(:, -)/selpre(', +), allocin(-)/allocyre()] - T
I (et x=ainb:B:T
object construction

A= [fit AT, mii(y;)BynT =
r |3i:Ai::Tres(xi)lzzlmn T, yj:A EB]':BJ‘I:TjJ:l"'m
L OF = %" mj = q(y))o =" A Ton(fi = %'~
field selection

I CX[f:Al: Tres(X)
I' AT es(selpre(X,)

field update
A=[f AT myg(y;) BT =M
I A Tes(X) T A Tes(Y)

l<ks<n
I DRfic:=y AT gea(X e, ¥)

method invocation
I X[m:g(Y)A:T]: Tres(X)
I Xm:AX/Y]:TXY]

TOI3. Inference rules of Abadi-Leino logic

10

Tdeposit(y) =l[z2= Selpre(y: balance)
[Thq(y, balance, z+ 10)

Tinterest(X,Y) = [ZZ = Selpre(% balance)
[THIm = selye(X, manager)
[T = selye(m, rate)
[Tha(y, balance, z [1¥100)

Tereate(X) = Topj(balance = 0)

Anccount(X) = [balance : Int,
depositl10 : (Y[: Taeposit(¥),
interest : ¢(Y)[] 2 Tinterest(X, Y)]
Anccractory = [manager : [rate : Int],
create : ¢(X)Aaccount(X) :: Tereate(X)]

Ajanager = [rate : Int,
accFactory : Axccractory

[)_(E]: Env' - St\/a| - V%I—v St\/a| ml + F)

< 0 p(x) if x Cdom(p)
[x DlJpovo ~ undefined otherwise
[X O]pova™ =f
[X Cresult] pova™ =V
[X Citue] povo®™ = true
[X Calse] pova™ = false
. if [X C&]povo™= | [oc and
[X CSelye(eo, €1)] povat= [X C&]povet=f B are defined

defined otherwise
F1.f if [X C&]povo™= | [Toc and

[X [Selposi€n, €1)] povo™= [X C&]povcet=f B are defined
defined otherwise

[7(DI] : Envt o P(Stva| X Val x stva|)
(o,v,oY K (& =e]p i[Cboth [x C&]povcotand [x [&]povcare defined

and equal, or both undefined
(o,v, oY OIX [Ellocye(e)]p i C[X [povo=Cdom(o)
(o,v,0Y I [Ellocges(€)] p i CIX C6] pova™Cdom(cY
(o,v,0Y K CIxT]p iorallu Mal + F. (o,v, 0% K, x CI]p[x:= U]

TIII4. Meaning of expressions and transition relations
the transition relations is untyped, the types of the free variables are not rele-
vant.The interpretation of object specificationg A,
[X CA] : Env - P(Val x St)

is given in Tab. 5.
We begin with a number of observations about the interpretation.

Lemma 3.2. For all specification&X [A, allo (3t and environmentg we have
(error, o) X CA]p.

Proof. Immediate from the definition ofyf CA] p. 1

Lemma 3.3 (Soundness of SubspecificationBuppos& [CA <: B. Then, for
all environmentg, [X CA]p X CB]p for valuesv.

Proof. This follows by induction on the derivation &f CA <: B. The cases for
reflexivity and transitivity are immediate. For the case where Bodmd B are
object specifications we need a similar lemma for transition relations:

If X CT andx CT then [l T -~ THmplies

[X CT]p CIX CTp ©)

12

[X CA]: Env - P(Val x St)
[X (Bool]p = BVal x St
[X OO A5, mitaly)y

4.1 Result Specifications, Store Specifications and a Tentative Semantics

A store specificatiolX assignlosedspecificationd_A to (a finite set of) loca-
tions:

Definition 4.1 (Store Specification).A recordX [[Rec .(Spegis astore spec-
ificationif for all | Cdom(Z), £.1 = A is a closed object specification.

Because we focus on closed specifications in the following, we need a way
to turn the componentB; of a specification f[: A'=1", mj:c(yj)Bj::T,-J=1"'m]

Observe that for alp, if - [=then||Alls CJ[A|s= We obtain the following
lemma aboutontext extensions

Lemma 4.5 (Context Extension).If p Tz andl’, x:A Cdk and v CIJA[p/T |5
thenp[x:=v] O, xAlls.-

Proof. The result follows immediately from the definition once we shyjw :=
v] OJ|s. This can be seen to hold singel_dom(I’), hence for ally:B in " we
know thatx is not free inB and we must havB[p[x := v]/T'] = B[p/T]. 1

We want to interpret store specifications as predicates over stores, as follows.

Definition 4.6 (Store Predicate, Tentative).Let P = P(St)Recec(SPes denote
the collection of predicates o8t, indexed by store specifications. We define a
functional® : P°P x P _, P as follows.

o LAY, X)s : | |
[Tdom(z) whereX.l = [£: A= m;: ¢(y;)Bj:T; =M :
(F) c)--I-fiX:

resulting object has to be allocated in the store, and so a proper extension of the
original store specificatioh has to be found.

So letAg = [my : ¢(Y)[]::Falsd and Ai;1 = [m1 : ¢(Y)Ai::Trug. In partic-
ular, this means that the methad of objects satisfyingdy mustdiverge. The
methodm; of an object satisfying returns an object satisfying-;. Hence,
for such objects, it is possible to have method cabsn;.m; ... m; at mosti
times, of which the-th call must necessarily diverge (the others may or may not
terminate). The example below uses the fact that we can construct an ascending
chain of objects for which the fir$t- 1 calls indeed terminate, and therefore do
notsatisfyAi_;. Then, the limit of this chain is an objexfor which an arbitrary
number of calls<.m;.m; ... m; terminates, and which therefore does not satisfy
anyof the A

Setzi'ms 2,1 A and leto] denote some store satisfyily Moreover,
define

0 ={lo = {mo = A_(I, 0 + o/}
whereog"= {l = {m; = A_. (Bndc] = {l = {my = A_(I, 0 + o[H}}, and let
o = [al. Finally, defineX, Y R by
Xsw= {0 + o'}, fori [N
X; = [for all others

Yy, = {0}

Y; = [for all otherE
By construction, bottX andY are admissible in every componéht By induc-
tion one obtaing P Ca™ 1., thereforeo, [ah 1. in @(Y, X)s. Hence we

must showo Ca(Y, X)y. But this is not the case, since it would entail, (%2)
and

c.l.me(0) = Lal.l.mo(0) = (1,0 + Liaf
that there exist&™ [such thato + Laf [Xzm Clearly this is not the case,
sinceo + L;TIF%S strictly greater than everg + G'Eand therefore not in any of
the XZIDJJ
4.3 A Refined Semantics of Store Specifications

We refine the definition of store predicates by replacing the existential quantifier
in (M2) of Definition 4.6 by aSkolem functionas follows: We call the elements
of the (recursively defined) domain

@ CRSF = Recoc(Recy (St x RSF x Spec [CSpecx RSF)) ()

choice functionsor Skolem FunctionsThe intuition is that, given a stor@ []
[Z], if o” =Y with choice functiong" for some extensio&™ [and the

16

method invocatior.|.m(c" terminates, thep.l.m(cF o5z = ™™ yields

a store specificatioB™ [Xf-such thaio™ =T (and ¢™is a choice function

for the extensiorE™of X). This is again an abstraction of the actual store

this time abstracting théynamic det¢tsof methods wrt. allocation, on the level

of store specifications. Note that the argument stores needed in general to
determine the resulting extension of the specification, since allocation behaviour
may depend on the actual values of fields, for example.

We use the domaiRSF of choice functions explicitly in the interpretation
of store specifications below. This has tHEeet of constraining the existential
guantifier to workuniformly on the elements of increasing chains, hence pre-
cluding the counter-example to admissibility of the previous subsection.

Definition 4.7 (Store Predicate). Let P = P(St x RSF)Recw=(SPe¢ denote the
collection of families of subsets 8f x RSF, indexed by store specifications. We
define a functiona® : P°P x P —, P as follows.

(0,9) LAY, X)z :
(1) dom(X) = dom(@) and O T_dom(X). dom(mo(Z.1)) = dom(g.l), and
(2) I dom(Z) whereX.| = [f: A'=>", mj:¢(y;)Bj:T; =t

we obtaino.l.fi CJJAlx by assumptiondj, ¢;) CB(Y, X)z. Next, SU%QDD
%, (0Y¢Y [M¥soandol.mj(c = (v,c™ 1. By definition ofc as ok and
continuity, we must havey.l.mj(c = (v, o1 for sufficiently largek, and

(v,oD = %‘k.l.m,—(c%‘ = %’05

By assumption, for all sficiently largek, gi.l.mj(c5o5= = (£ 79 with
L >iHand

* (val(0Y, v, va () COT;[I/T

Fsirse(€ €)(0,9) C(YTXYs which proves (

5 Soundness

5.1 Preliminaries

Recall from the previous section that the semantics of store specifications is de-
fined in terms of the semantidig\||s for result specification\ that does not
mentionSt at all. The following key lemma establishes the relation between
store specifications and object specificationg\] as defined in Section 3.3:

Lemma 5.1. For all object specifications A, store specificatiahstoreso, and
locations |, ifo [JE] and | Cdom(X) such thatl 3.1 <: A then(l, o) CTIA].
Proof. By induction on the structure d. BecauseA is an object specification
it is necessarily of the form
A= [fi: A mysg(y)) BT =M
We have to show that,(©) CJICA], i.e., that
e (olfi,0) (JICA]]foralll <i<nand

- if a.l.mj(0) = (v, dYthen ¢, o Cy; [B;1(y; B 1) and (tva O, v, Tiya 0 [
Ly; CTil(y; B Dforalll< j<m.

From the subtyping relation arill <: A we find
T = [f: AP mj:c(yj)BjD.:Tj'jFl"'m*”]

wherey; [B’<: Bj andy; [l T’ T;.

For the first part, by Definition 4.7F) ando [JIX] we haveo.l.fi CJAls.
If A is Boolthen from||Bool||s = BVal, hence, ¢.1.fi, 0) CICBool]. Otherwise
A is an object specification and the definition|éf||s implies

X.(o.lfi) <t A

again by Definition 4.7F). Hence by induction hypothesis we obtanl (f;, o) [
[CAs] as required.
For the second part, suppose todtm;(o) = (v, 6. From Definition 4.7

part(M2) and(M3), and the assumptioo], we find v ﬁl/yj

[CB;{I7yj]]. Thus,

(v, 0"y COCBifIZY] = [y; CB{(y; B 1) Lemma 4.2
y; CBiI(y; B 1) Lemma 3.3

as required.
Finally, by Definition 4.7(M1) we obtain

(Tvar 0.V, v 0 CRCTTIAY] = [y CTH(y; B 1) Lemma 4.2
Cy; CT1(y; B 1) soundness off]
This concludes the proof. 1
We can now define the semantics of judgements of Abadi-Leino logic and
prove the key lemma.

Definition 5.2 (Validity). T [Ca: A:: T if and only if for all store specifications
T [Recioc(Spey, for all p s and allo Y], if [a]po = (v,cY

Thus,
(Mval G,V tva 00ty 0™ [
[X x CTFselint(:, -)/s€lpost,), llocint()/allocpos(-), X/result]] p[x := V]

since there are no occurrencesels(:, -), allocpos(-

Note that by the subtyping rules, = Bool if and only if A¥= Bool. In this
case(S3)follows directly from(S3). In the case wheradHis an object speci-
fication, assumptiord]

(S1) o(cTez" = (=FoY

(S2) (69" = (c5e") Lik(®)so

(S3) v=true [(BVal = ||A||so

(S4) (ya(cY, true, s (0B CH T [Tes(true)] p by definition
as required. The case whexés false is analoguous.

« Conditional
By a case distinction, depending on whether the value of the guartiue
or false

e Let

SupposdH1) T [@: A:: T has been derived by an application of the (Let)
rule. Henceais let x = a; in a,. Assume that

(H2) X is a store specification, and
(H3) p Lls
Now recall the rule for this case,
I E;:A::T, T xA E:AT, [T A [T CT
Lol Ta[s€lint(-, -)/Se|p051(-,), aHOCint(')/a”ocposl('): x/result]
CT3[seline(, ')lselpre('a), aHOCint(')/a”OCpre(')] - T
I' (et x=aq inaA:T
By the premiss of this rule we must have
(Hl,) r E]_ . A]_ . T1
(H1) I''xAL @ ATy

By induction hypothesis applied {#11") there isp, [3IF s.t. for allz=]
(ool Hik(®)zowith [a;] po™= (¥, &), the conclusions of the lemma hold:

(S1') there exist& [ZFandg CRSF s.t.p(c5o5=Y = (2, ¢)
(S2)) (6,9) CTK(®)s
(S3) W (o) TASKETdIGR TS

305083 T (I8 ® 368 481ATIEAR2 9968 IS A0 0T AN BYBE3 T -

(S1") there existE£ P Xand9™RSF s.t.¢¢(5, 9, %) = (LoD
(527) (0" [iK(®)sw
(S3") v OIA[p[x := VI/T, x:Aq]||sm
(S4") (vai(6), v, vai(c™) CIIT, x:A1] CT2]p
Now definep [SF for all o5 ¢-andz by

a0
p(c ez =
°.8201 9.963 Tf 4.115 Td[(;)]TI/F955.663 63 Tf 4.423 12.285 1.763 Td[(")30 9.963 Tf 5-66TJ

(S4) (Mvai(0"), v, v (c™) CIT CT]p, by (9)
as required.

* Object
SupposgH1): I' [a: A:: T has been derived by an application of rule the
(object construction) rule. Necessardy= [f; = x'=>", m; = ¢(y;)b;!=*™M.
Suppose that

(H2) X is a store specification
(H3) p LIl
We recall the object introduction rule,
A= [fi: A, myso(y)) By T ="
T CHA = Tres(X) =" T,yj:A [B;:Bj:T;=1-m
U O = %" my = ¢(y)by ™A Toi(fy = Xa - .. o = Xn)

from which we see thah is [fi:A;, mj:B;::Tj], that T is Top(fr = X¢...fa =
Xn) and that

H) ' : A = Tes(X)forl<i<n
(H1") Iy:ALG;:Bj::Tjforl<j<m
We have to show that there ¢s [3F s.t. for all=™ [, (c5¢Y CHx(dP)so
with [a] pa™= (v, a, (S1)}(S4)hold. A A
From(H3) and Lemma 4.5 we know that for &l [Xlandly Cdom(X),
ply; = lo] AL A

Hence by induction hypothesis qi1”), there iscpljo [CBF forall 1 <

j <ms.t forallz; X, lo:Alp/I]), for all (o1, ¢1) CAX(D)s,-arprmy With
[bilply; := lo]Jo1 = (v, 02) |, we obtain the conclusion§&1)(S4)of the
lemma, i.e.,

(S1) there existE, [X} andg, CRSF s.txp,jo(crl, 01,%1) = (Z2,02)
(S2) (02, ¢p) LIX(D)s,

(S3) v %j[p[w = |o]/F,yJ'1A]%2

(S4) (Mvai(01), V2, vai(02)) LA, yj:Al CT]ply; = lo]

We show tha{S1)«(S4)hold. Let=" 3] (o'oY [ix(®); and suppose
[alpo®= (v, 6. ByOJ/F90 9.963 TO50S1)

(F) By assumptior(H1’) andp]|z we know that there i€ A P<: A
forall1<i<ns.t x:AHnT. Hence,

oo = p(x) CHAE LA ClAlle

(M) Let1< j<m. Suppose; [Zi¥let (01, ¢;1) CTix(®)s, and suppose
0™Mo.mj(01) = (v2,02). Sincea™o.mj = [bjlply; := lo]o1 and
¥, [the assumptiondy, ;) CAx(®)zoand the construction of
¢oMgive =, and, s.t.

C9™o.m;(01, 91, 1) = 0] (01, 01, 21) = (%2, ¢2), by (S1)
[{o2, 9,) LIX(D)s,, by (S27)

0V, ilPLy; = lo]/T, yjiA]%2 = %j[P/F][lo/yJ‘]%z, by (S3)
and the substitution lemma, Lemma 4.2

C{tvai(01), V2, vai(02)) LHT, yj:Al CTj]ply; = lo] which equals
[Tilp/T[lo/yill, by (S4’) and the substitution lemma

Thus we have showro{®¢™) [Fix(P)sm i.e., (S2)holds.

* Method Invocation

Supposd” [d: A:: T is derived by an application of the method invocation
rule:

I B[m:(Y)ART P Tres(X)
I 3Rm:APX/Y]: T Pxy]

Necessarila is of the formx.m and there ar&-andT"5.t. A = Afx/y] and
T = TPx/y]. So suppose

(H1) T [@: Afx/y] 2 TExy]
(H2) X is a store specification
(H3) p LIl
Defineg [CSF using “self-application” of the argument,
0(c" 95z = 0"p(x).m(c e 'E (12)

Now let = [, (oo Hix(d)soand supposed] po™= atp(x).m(c =
(v, o terminates. We show th&81)(S4)hold.
By the hypothesis of the method invocation rule,

I C[M:g()ASTH: Tres(X) (H1)

Since this impliesx:B T for some [] [CB <: [m : ¢(Y)A”: T by
assumptior{H3) this entails

[2.(p(x) <: [m: (A~ TT[p/T]

29

i.e., there arey, A B; andT;, T™such that
DLp(X) = [fi:A, miig(y)B; = Tj, mg()ATH
where
y CAT<: Ap/T] and LI T™- THp/1] (13)

Now assumptiong5eY [Fix(d)sowith equation (12) implies that there
arez™ s t.

(S1) 9(0"95'2Y = 0(p(x)).m(c" ez = (o™
(S2) (0™ iX(®)zm
(S3") v O (/Y] llso
(S4)) (Mva(0", v, Tvar(0™) CHCTTp(x)/y]l

By transitivity of <:, equation (13), Lemma 4.2 ari§3’)

v I%\Tplrl[p(X)/y]%m

SinceAp/T, p(x)/y] = ATx/y][p/T] we also have
(S3) v/ lsm= IIA[P/T s

Similarly, by (13) andS4"),

(tvai(0", v, Tvai(@™) CHT (/11 CIT Tp/T1[p(x)/Y]

= [[T] CT[x/y]l p (S9
which was to show.

« Field Selection
Similar. ¢ can be chosen agcFe5=Y = (95=Y.

e Field Update
Suppose

(H1) T &

In particular,ais of the formx.fi :=y andT is Typa(X, fk, y). From the seman-
tics of [a] po’; this meany = p(X) [oc and

o= o'fvi= o' Mfic = p(y)]] (14)
We show tha{S1}(S4)hold.

By (H3), p(x) CTHA[p/T]|lx W p/T]|lszz Then by construction o,
and (14),

(S1) o(cTez" = (=FoY
(S3) v=p(x) LIAp/T]|lzo
(S4) (myai (oY, v, ya (™) CIIT] CT]p, from the semantics given in Tab. 4

It remains to showS2) (6@ [Hik(®)sn
By assumptiong oYy [Tfix(®)sg condition (1) of Definition 4.7 is satis-
fied. As for condition (2), suppose_dom(Z5 s.t.

20 = [g; AT P ngig(y) B T
(F) We distinguish two cases:

— Casel = p(x) andg; = fx. Then, by (14)c"1.g; = p(y). By (H3),
p() CIAP/TT|ly CHA[p/T]ly5 which entails
5 <: A[p/T]

and in particular, by the definition of the subspecification relation,
A= A(p/T]. Note thatinvariance of subspecificatiom the field
components is needed to conclude this. Now agaifiH3),

p(Y) CIAp/T]ly I[P/ ls0= o

Hence,g™.g; il as required.

— Casel [Cplx) org; [T Theno™l.g, = otl.g;, 4). Hence, by
assumptiong@®e" [Tik(®)s5 we haves™.g; i

(M) Letz™[=F let (01, 1) CTix(®)smand suppose™l.nj(a1) = (v2, 02).
Then, by assumptioro(;'¢" Cfix(®)soand the fact tha™.nj = otl.n;
by (14), we obtain thap™l.nj(o1, 91, = = (22, 9,) s.t.Z, [=Tand

(M1) (Mva(01), V2, Tvai(02)) CITTI/y;1]
(M2) (02,9p) [IK(D)s,
(M3) v, E%ﬁl/yj]%z

as required.

which concludes the proof. 1

31

5.3 Soundness Theorem

With Lemma 5.1 and Lemma 5.4, proved in Subsections 5.1 and 5.2, it is now
easy to establish our main result:

Theorem 5.5 (Soundness)If ' [(d: A:: Tthenl [(@: A T.

Proof. Supposd” [@: A:: T, and letX [Rec .(Spe¢ be a store specification
and suppose [Envs.t.p [

ness”.

A B = CTIBool | [fi: A", mj:q(y;)Byi:T =M | p(X)A
AB:=A]| X

whereX ranges over an infinite s&y/\Var of specification variablesX is bound
in u(X)A, and as usual we identify specifications up to the names of bound vari-
ables.

In addition to specification contexiswe introduce contexta that contain
specification variables with an upper boud<: A, whereA is either another
variable or C_Th the rules of the logic we replade[l.. by T'; A [1.., and the
definitions of well-formed specifications and well-formed specification contexts
are extended, similar to the case of recursive types [1].

ALY X IA Ldk X [
A X <Y [dk I A X <: [CTHk

and
[; A X <: A APCdk A X< IR I; A Cdk
;A X <: A AYCX I; A CH(X)A A CT 1
and we often write\, X for A, X <: [
Subspecifications for recursive specifications are obtained by the “usual” re-
cursive subtyping rule [3], andlislthe greatest specification,
I'AY<: LX< Y[A<:B I';A CA
I A CHXA<: uY.B A CA<: [
As will be seen from the semantics below, in our model a recursive specification
and its unfolding are not just isomorphic but equal, i.gX[A] = [A[(LX-A)/X]].
Because of this, we do not need to introdérlel andunfoldterms: We can deal
with (un)folding of recursive specifications through the subsumption rule once
we add the following subspecifications,
;A XA unfold ;A CHXA
I A CA[(UXA)/X] <: pX A I A CHXA < A[(LXA)/X]
We will prove their soundness below.

fold

6.1 Existence of Store Specifications

Next, we adapt our notion of store specification to recursive specifications. The
existence proof is very similar to the one given in Section 4, however, for com-
pleteness we spell it out in detail below.

Definition 6.1. A store specification is a recol [Rec, ,.(Spe¢ such that for
each | Cdom(Y),

== uOQLA: AT, myso(yy) By Tyt

33

is a closed (recursive) object specification.

i.e., f(; xJ = ﬁxi), the greatest fixed point can be obtained as

gfp(f) = {f"(Dn [N} (15)
where [islthe greates ent &f Writing a = IT—T”I(Din CN}itis
immediate thatf (o) = H(On W} =

PO TIITITM OTTO[T; A [CA] preserves meets of descending chains:
Nozm=... LA CA]p(ini; = iiF;A CAlpni

In particular, this lemma shows that the greatest fixed point used in Defini-
tion 6.4 exists, by the observations made above.

Proof. We can show both properties simultaneously by induction on the structure
of A. The only interesting case is whe#ds u(X)B.
To show the first partylonotonicity, note that the assumptiop < n, entails

NiX = X1] S n2[X=x2] forall x3 X CAdm(Val x St)
So for fi : Adm(Val x St) - Adm(Val x St) defined by
fix) = [0 A X [Blpni[X =X], i1=12

we obtain from the induction hypothesis @that f; is monotonic, preserves
meets, and; < f,. By the observations made aboggp is monotonic which

yieldsgfp(fi) Cgip(fy). Thus
[T; A THCX)B] pne = gfp(f1) Cglp(fz) = [T A CH(X)B] pn2

which concludes the proof 1

Lemma 6.6 (Substitution). For all T'; A, X [CA,T'; A [B, p andn,
[T; A X CAJp(M[X=[T; A CB]pn]) = [T;A CAB/X]Ipn

Proof. By induction onA. 1

6.3 Syntactic Approximations

Recall the statement of Lemma 5.1, one of the key lemmas in the proof of the
soundness theorem:

forallo,X,1 and [CA, if o (JE] and 3.l <: Athen (,0) CICA] (18)

In Section 5 this was proved by induction on the structurd.of his inductive
proof cannot be extended directly to prove a corresponding result for recursive
specifications: The recursive unfolding in cagesand(M3) of Definition 6.2
would force a similar unfolding oA in the inductive step, thus not necessarily
decreasing the size &

Instead, we consider finite approximations as in [3], where we get rid of
recursion by unfolding a finite number of times and then replacing all remaining
occurrences of recursion bly_We call a specificatiomon-recursivef it does
not contain any occurrences of specifications of the fp¢X)B.

Definition 6.7 (Approximations). For each A and KCN, we define jB-Proof.

| L Ly
r ;A mllﬂ...mp r ;A m < AIm:ln 1—‘ yj |—_-|]-jq]=l.“m
F,yj;A I:Bjjzm+1...m+q T, y]‘;A I:Bj < Bj[n:l...m @TJ‘ . Tj[j]:l...m
T3 A COF: AP myq(y)) By Ty =] < [fi A", myq(y) BT -

TLOTB. The generalised object subspecification rule

invariance in field specifications. For exampleAiE& [f; : X, f, : Bool then
HOOUYAP = [f1 : HOOU(Y)A, T2 : Booll
= [f1 : KOQU(Y)AL T2 : Bool']
= [f1 : [f1 : pOXOU(Y)A, f : Booll|}, , : Bool]
= [fy : [f1 : pOOR(Y)AP, f, : Bool], f, : Bool]
=[fy:[f,: CH: O3 : Booll
By inspection of the rules, g(X)u(Y)A <: p(X)u(Y)A? requires to show
;A O [f: OU(Y)A, T2 2 Bool], f, : Bool] <: [fy : [f1 : Ci: .3 : Booll

for appropriatd” andA. But subspecifications of object specifications can only
be derived for equal componeritawith the rules of Sect. 3.
Therefore we consider the more generous subspecification relation that also

e Aisu(X)B. Then, by induction hypothesis,
;A CB[A/X] <:“B[A/X][¢
By definition of approximations, the latter equal. Moreover,
;A CA <:5B[A/X]
by the (unfold) rule, and transitivity then yielfisA [A <:FAK.
 Ais [fi: A" miig(y;) BT =M. By definition,
A= [AR my By
By induction hypothesis we obtain tHatA [A; <:"A <! and thaf, yi; A
B; <:5B;|* which entails
;A O A,myc By T <Hf s Aymy o By Ty
by the (modified) subspecification rule, as required.

Soundness of Subspecification
Soundness of subspecification is easily established:

Lemma 6.9 (Soundness of<:5). If ;A CA <:B, p [Bnv andn [CA then
[T;A CAJpn LI A CB]pn.

Proof. By induction on the derivation df; A [A <:"B.
» (Reflexivity) and (Transitivity) are immediate, as is (Top).

e (Fold) and (Unfold) follow from the fact that the denotationugX)A is in-
deed a fixed point,

[T; A CHX)AlpN = gfp(AX.I[T; A, X CA]pen[X = Xx]) by definition
= [I; A, X CAJp(n[X = [T; A CH(X)A]pn]) fixed point
= [T; A CAX)A/X]] pn Lemma 6.6

= For the case of (Object), we must have
A=Tfi: A=LP m; : ¢(y;)B; :: Tjj:l...m+q]
and
B =[fi : A" my : q(yy)Bk: Ty

such thaf’; A A <:“A”andl,y;;A [Bj <:"Bfand el Tj ~ T/ By
induction hypothesis,

[T; A CATen CI; A CATpn

39

and

[T, y;; A CB{I(ply; := IHn CI,yj; A CB(ply; := 1N
forall1<i<n,1<j<mandl [oc. Moreover, by soundness &flwe
know

(11 y; CId(ply; ==

Proof. By induction on the lexicographic order dband the number gf in head
position.

» | = 0. Clearlyl’; A CAIB/X]|° <:C=IA[B]/X]|°.
« | > 0. We consider possible cases far
— Ais X. ThenI'; A CAIB/X]| = Bl <:"BN' = A[B[/X]]|".
— Ais [BoolorY [X. Thenl'; A CA[B/X]|' = A <:FA' = AIB*/X]]".
— Ais [fi: A", mj: ¢(y;)B;:T;”=™M. Then, by induction hypothesis,
;A CAB/X] ™ <EA[B/X] ™
and
,y;:A A [B;[B/X]| <:B;[Bl/X][*
foralll1<i<nand 1< j <m. Hence,
;A CAB/X]| <:Hfi - A[B[/X], m; : Bi[B[/X]]|' = A[B[/X]|

— Ais u(Y)C, without loss of generality not free inB. Then by induction
hypothesis we find; A CC[A/Y][B/X]| <:“C[A/Y][B[/X]|'. Using
properties of syntactic substitutions, we calculate

AB/X]|" = u(Y)(C[B/X])|
= C[B/X][(W(Y)(C[B/X]))/Y]|
= C[B/X][(A[B/X])/Y]|
= C[A/Y][B/X]|
and analogousIZ[A/Y][B[*/X]|' = AIB[/X]|', which entails the result.
1

Lemma 6.11 (Approximation of Specifications).For all I'; A A, p [Bnv and
environments A,

[T;A CAJpn = kuguﬁ ;A CAKpn

Proof. By (19), all that remains to show i [A CA]pn Iﬁmlﬂl";A CAM pn.
We proceed by induction on the lexicographic order on paitsX) whereM is

an upper bound on the numberebinders inA. For the base cas#} = 0, by
Lemma 6.8(3) there exists [N such that for alk = n, AX = A, and so in fact

[T;A CAJpn = [T; A CA"len Iﬂ%mlllr;A CA] pn

Now suppose thah contains at mostl + 1 p binders. We consider cases for
A

41

6.4 Soundness

After the technical development in the preceding subsection we can now prove
(18). From this result the soundness proof of the logic extended with recursive
specifications then follows, along the lines of the proof presented in Section 5
for finite specifications.

Lemma 6.12. For all ¢, 2,1 and [A, if o 2] and [X.I <:“A then(l, o) [
[Al.

Proof. The proof proceeds by considering finite specifications first. This can
be proved by induction o

arbitrary extension§™~ [l This will account for the (specifications of) objects
allocated between definition time and call time.

Clearly, not every predicate on stores is preserved. As we lack a seman-
tic characterisation of those specifications that are syntactically definatdg, (as
specification syntax appears in the definitioncofl JIX] (Def. 4.7). More an-
noyingly, field update requires subspecifications to be invariant in the field com-
ponents, otherwise even type soundness is invalidated. We do not know how to
express this property of object specifications semantically (on the level of predi-
cates) and need to use the inductively defined subspecification relation instead.

The proof of Theorem 4.8, establishing the existence of store predicates, pro-
vides an explanation why transition relations of the Abadi-Leino logic express
properties of the flat part of stores only: Semantically, dfi@ent) condition
is that transition relations are upwards and downwards closed in their first and
second store argument, respectively.

Abadi and Leino’s logic is peculiar in that verified programs need to preserve
store specifications. Putfterently, only properties which are in fact preserved
can be expressed in the logic. In particular, specifications of field values are
limited such that properties like e.gelf.hd < self.tail.hd, stating that a list is
sorted, cannot be expressed. In future work we thus plan to investigate how a
logic can be set up where

* methods are specified by pfigest-conditions that explicitly state invariance
properties during execution of the method code.

« methods can be specified by ppost-conditions that can refer to other meth-
ods. This is important for simulating methods that act like higher-order func-
tions (e.g. the map function for lists).

« methods can have additional parameters.

« method update is allowed. In the setting of Abadi and Leino this would re-
quire that the new method body satisfies the old specification (in order to
establish invariance). More useful would be a “behavioural” update where
result and transition specifications of the overriding method are subspecifi-
cations of the original method.

The results established in this paper pave the way for the above line of research.
AcknowledgementWe wish to thank Thomas Streicher for discussions and
comments.

References

[1] M. Abadi and L. Cardelli.A Theory of ObjectsSpringer, New York, 1996.

[2] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In N. Dershowitz, editor,
Verification: Theory and Practicgpages 11-41. Springer, 2004.

44

[3] R. M. Amadio and L. Cardelli. Subtyping recursive typ&&€M Transactions on Programming
Languages and Systeni$(4):575-631, 1993.

[4] K.R. Apt. Ten years of Hoare’s logic: A survey — partACM Transactions on Programming
Languages and Systen®4):431-483, Oct. 1981.

[5] F. S.de Boer. A WP-calculus for OO. In W. Thomas, edikaindations of Software Science
and Computation Structuresolume 1578 of.ecture Notes in Computer Scienpages 135—
149, 1999.

[6] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-oriented
languages: Logical models and tools. In C. Hankin, edi®yggramming Languages and
Systems—ESOP’98, 7th European Symposium on Progranwoinge 1381 of ecture Notes
in Computer Sciencgages 105-121, Mar. 1998.

[7] C.A.R.Hoare. An Axiomatic Basis of Computer Programmi@@mmunications of the ACM
12:576-580, 1969.

[8] K.R. M. Leino. Recursive object types in a logic of object-oriented programs. In C. Hankin,
editor, 7th European Symposium on Programminglume 1381 of ecture Notes in Computer
Sciencepages 170-184, Mar. 1998.

