
Denotational Semantics for Abadi and
Leino’s Logic of Objects

Bernhard Reus
Jan Schwinghammer

Denotational Semantics for Abadi and Leino’s
Logic of Objects

B R and J S

1 Introduction

When Hoare presented his seminal work about anaxiomatic basis of computer
programming[7], high-level languages had just started to gain broader accep-
tance. While programming languages are evolving ever more rapidly, verifica-
tion techniques seem to be struggling to keep up. For object-oriented languages
several formal systems have been proposed, e.g. [2, 6, 13, 12, 5, 20, 17]. A “stan-
dard” comparable to the Hoare-calculus for imperative While-languages [4] has
not yet emerged. Nearly all the approaches listed above are designed for class-
based languages (usually a sub-language of sequential Java), where method code
is known statically.

One notable exception is Abadi and Leino’s work [2] where a logic for an
object-based language is introduced that is derived from the imperative object
calculus with first-order types,impς, [1]. In object-based languages, every ob-
ject contains its own suite of methods. Operationally speaking, the store for such
a language contains code (and is thus calledhigher-order store) and modularity
is for free simply by the fact that all programs can depend on the objects’ code in
the store. We therefore consider object-based languages ideal for studying mod-
ularity issues that occur also in class-based languages. Class-based programs
can be compiled into object-based ones (see [1]), and object-based languages
can naturally deal with classes defined on-the-fly, like inner classes and classes
loaded at run-time (cf. [14, 15]).

Abadi and Leino’s logic is a Hoare-style system, dealing with partial cor-
rectness of object expressions. Their idea was to enrich object types by method
specifications, also calledtransition relations, relating pre- and post-execution
states of program statements, andresult specificationsdescribing the result in
case of program termination. Informally, an object satisfies such a specification

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]

if it has fieldsfi satisfyingAi and methodsm j that satisfy the transition relation
T j and, in case of termination of the method invocation, their result satisfiesBj .
However, just as a method can use theself-parameter, we can assume that an
objecta itself satisfiesA in bothBj andT j when establishing thatA holds fora.
This yields a powerful and convenient proof principle for objects.1

We are going to present a new proof using a (untyped) denotational seman-
tics (of the language and the logic) to define validity. Every program and every
specification have a meaning, adenotation. Those of specifications are simply
predicates on (the domain of) objects. The properties of these predicates provide

1This also works for class-based languages. But an easier solution for those is to interpret class
specifications as mutually defined predicates over classes (and their class names).

2

a description of inherent limitations of the logic. Such an approach is not new, it
has been used e.g. in LCF, a logic for functional programs [10].

The difficulty in this case is to establish predicates that provide the powerful
reasoning principle for objects. Reus and Streicher have outlined in [16] how
to use some classic domain theory [11] to guarantee existence and uniqueness
of appropriate predicates on (isolated) objects. In an object-calculus program,
however, an object may depend on other objects (and its methods) in the store.
So object specifications must depend on specifications of other objects in the
store which gives rise to “store specifications” (already present in the work of
Abadi and Leino).

For the reasons given above, this paper is not “just” an application of the ideas
in [16]. Much care is needed to establish the important invariance property of
Abadi-Leino logic, namely that proved programs preserve store specifications.
Our main achievement, in a nutshell, is that we have successfully applied the
ideas of [16] to the logic of [2] to obtain a soundness proof that can be used to
analyse this logicand todevelop similar but more powerful program logicsas
well.

Our soundness proof is not just “yet another proof” either. We consider it
complementary (if not superior) to the one in [2] which relies on the operational
semantics of the object calculus and does not assign proper “meaning” to speci-
fications. Our claim is backed up by the following reasons:

• By using denotational semantics we can introduce a clear notion of validity
with no reference to derivability. This helps clarifyingwhat the proof is
actually statingin the first place.

• We can extend the logic easily e.g. for recursive specifications. This has been
done for the Abadi-Leino logic in [8] but for a slightly different language with
nominal subtyping.

•

a, b ::= x variable
| true | false booleans
| if x then a else b conditional
| let x = a in b let
| [fi = xi

i=1...n, m j = ς(yj)bj
j=1...m] object construction

| x.f field selection
| x.f := y field update
| x.m method invocation

T 1. Syntax

recursive specifications can be introduced (Section 6) and discuss the benefits of
the denotational approach (Section 7).

When presenting the language and logic, we deliberately keep close to the
original presentation [2].

2 The Object Calculus

Below, we review the language of [2], which is based on the imperative object
calculus of Abadi and Cardelli [1]. Following [16] we give a denotational se-
mantics in Section 2.2.

2.1 Syntax

Let Var, M and F be pairwise disjoint, countably infinite sets ofvariables,
method namesandfield names, respectively. Letx, y range overVar, let m ∈ M

andf ∈ F . The language is defined by the grammar in Tab. 1.
Variables are (immutable) identifiers, the semantics of booleans and condi-

tional is as usual. The object expressionlet x = a in b first evaluatesa and
then evaluatesb with x bound to the result ofb.

Object construction [fi = xi
i=1...n, m j = ς(y j)b j

j=1...m] allocates new storage

let construct2

[[x]]ρσ =

{
(ρ(x), σ) if x ∈ dom(ρ)
(error, σ) otherwise

[[true]]ρσ = (true, σ)

[[false]]ρσ = (false, σ)

[[if x then b1 else b2]]ρσ =


[[b1]]ρσ′ if [[x]]ρσ = (true, σ′)
[[b2]]ρσ′ if [[x]]ρσ = (false, σ′)
(error, σ′) if [[x]]ρσ = (v, σ′) for v < BVal

[[let x = a in b]]ρσ = let (v, σ′) = [[a]]ρσ in [[b]]ρ[x := v]σ′

[[[fi = xi
i=1...n, m j = ς(yj)bj

j=1...m]]] ρσ

=

{
(l, σ[l := (o1, o2)]) if xi ∈ dom(ρ)

We will also use a projection to the part of the store that contains data in
Val only (i.e., forget about the closures that live in the store),πVal : St → StVal

defined by (πVal σ).l.f = σ.l.f, whereStVal = RecLoc(RecF (Val)). We refer to
πVal(σ) as theflat partof σ.

Example 2.1. We extend the syntax with integer constants and operations, and
consider an object-based modelling of a bank account as an example:

acc(x) ≡ [balance = 0,

deposit10 = ς(y)let z= y.balance+10 in y.balance:=z,

interest = ς(y)let r = x.manager.rate in

let z= y.balance∗r/100 in y.balance:=z]

Note how the self parameter y is used in both methods to access thebalance

field. Object acc depends on a “managing” object x in the context that provides
the interest rate, through a fieldmanager

components, which will be justified by our semantics.
Intuitively, true andfalse satisfyBool, and an object satisfies the specifi-

cationA ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m] if it has fields fi satisfyingAi and
methodsm j that satisfy the transition relationT j and, in case of termination of
the method invocation, their result satisfiesBj . Corresponding to the fact that a
methodm j can use theself-parametery j , in bothT j andBj it is possible to refer
to the ambient objecty j .

LetΓ range overspecification contexts x1:A1, . . . , xn:An. A specification con-
text iswell-formedif no variablexi occurs more than once, and the free variables
of Ak are contained in the set{x1, . . . , xk−1}. In writing Γ, x:A we will always
assume thatx does not appear inΓ. Sometimes we write∅ for the empty context.
GivenΓ, we write [Γ] for the list of variables occurring inΓ:

[x1:A1, . . . , xn:An] = x1, . . . , xn

If clear from context, we use the notationx for a sequencex1, . . . , xn, and simi-
larly x : A for x1:A1, . . . , xn:An. To make the notions of well-formed specifica-
tions and well-formed specification contexts formal, there are judgements for

• well-formed transition relations:

x1, . . . , xn ` T,

is covariant along method specifications and transition relations, and invariant in
field specifications. Observe thatx ` A1 <: A2 in particular impliesx ` Ai for
i = 1, 2.

In the logic, judgements of the formΓ ` a:A::T can be derived, whereΓ is a
well-formed specification context,a is an object expression,A is a specification,
andT is a transition relation. The rules guarantee that all the free variables ofa,
A andT appear in [Γ]. We use the following transition relations in the rules:

Tres(e) ≡ result = e

∧ ∀x, f .allocpre(x) ↔ allocpost(x) ∧ selpre(x, f) = selpost(x, f)

Tobj(fi = xi)
i=1...n ≡ ¬allocpre(result) ∧ allocpost(result)

∧ ∀x, f .x , result →

(allocpre(x) ↔ allocpost(x) ∧ selpre(x, f) = selpost(x, f))

∧ selpost(result, f1) = x1 ∧ · · · ∧ selpost(result, fn) = xn

Tupd(x, f , e) ≡ ∀x′.allocpre(x
′) ↔ allocpost(x

′) ∧ selpost(x, f) = e

∧ ∀x′, f ′.(x′ , x ∧ f ′ , f) → selpre(x
′, f ′) = selpost(x

′, f ′)

∧ 9.963 Tf 5.539 0 Td[(].)-310(W)80(e)-250(use)-250(the)-250s
3825039]TJ/F104 n Td[1iT0 Td[(].)- 5.9u.Td[(1)]TJ/F27 8.966 Tf sm2N$

subsumption

[Γ] ` A <: A′ Γ ` a:A::T [Γ] ` A′ [Γ] ` T′ `fo T → T′

Γ ` a:A′::T′

variable
Γ ` ok x:A in Γ
Γ ` x:A::Tres(x)

booleans
Γ ` ok

Γ ` false:Bool::Tres(false)
Γ ` ok

Γ ` true:Bool::Tres(true)

conditional
A[true/x] ≡ At[true/x] andA[false/x] ≡ Af [false/x]
T[true/x] ≡ Tt[true/x] andT[false/x] ≡ T f [false/x]
Γ ` x:Bool::Tres(x) Γ ` a:At::Tt Γ ` b:Af ::T f

Γ ` if x then a else b:A::T

let
Γ ` a:A′::T′ Γ, x:A′ ` b:B::T′′ [Γ] ` B [Γ] ` T

`fo T′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]
∧ T′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ ` let x = a in b:B::T

object construction

A ≡ [fi : Ai
i=1...n, m j : ς(yj)Bj ::T j

j=1...m]
Γ ` xi :Ai ::Tres(xi)

i=1...n Γ, yj :A ` bj :Bj ::T
j=1...m
j

Γ ` [fi = xi
i=1...n, m j = ς(yj)bj

j=1...m]:A::Tobj(fi = xi
i=1...n)

field selection
Γ ` x:[f:A]::Tres(x)

Γ ` x.f:A::Tres(selpre(x, f))

field update

A ≡ [fi : Ai
i=1...n, m j : ς(yj)Bj ::T j

j=1...m]
Γ ` x:A::Tres(x) Γ ` y:Ak::Tres(y)
Γ ` x.fk := y:A::Tupd(x, fk, y)

1 ≤ k ≤ n

method invocation
Γ ` x:[m:ς(y)A::T]::Tres(x)
Γ ` x.m:A[x/y]::T[x/y]

T 3. Inference rules of Abadi-Leino logic

10

Tdeposit(y) ≡ ∃z.z= selpre(y, balance)
∧Tupd(y, balance, z+ 10)

Tinterest(x, y) ≡ ∃z.z= selpre(y, balance)
∧∃m.m= selpre(x, manager)
∧∃r.r = selpre(m, rate)
∧Tupd(y, balance, z∗ r/100)

Tcreate(x) ≡ Tobj(balance = 0)

AAccount(x) ≡ [balance : Int,
deposit10 : ς(y)[] :: Tdeposit(y),
interest : ς(y)[] :: Tinterest(x, y)]

AAccFactory ≡ [manager : [rate : Int],
create : ς(x)AAccount(x) :: Tcreate(x)]

AManager ≡ [rate : Int,
accFactory : AAccFactory

[[x ` e]] : Env+ → StVal → Val → StVal ⇀ (Val + F)

[[x ` x]]ρσvσ′ =

{
ρ(x) if x ∈ dom(ρ)
undefined otherwise

[[x ` f]]ρσvσ′ = f
[[x ` result]]ρσvσ′ = v
[[x ` true]]ρσvσ′ = true
[[x ` false]]ρσvσ′ = false

[[x ` selpre(e0, e1)]]ρσvσ′ =


σ.l.f if [[x ` e0]]ρσvσ′ = l ∈ Loc and

[[x ` e1]]ρσvσ′ = f ∈ F are defined
undefined otherwise

[[x ` selpost(e0, e1)]]ρσvσ′=


σ′.l.f if [[x ` e0]]ρσvσ′ = l ∈ Loc and

[[x ` e1]]ρσvσ′ = f ∈ F are defined
undefined otherwise

[[x ` T]] : Env+ → P(StVal × Val × StVal)

(σ, v, σ′) ∈ [[x ` e0 = e1]]ρ iff both [[x ` e0]]ρσvσ′ and [[x ` e1]]ρσvσ′ are defined
and equal, or both undefined

(σ, v, σ′) ∈ [[x ` allocpre(e)]]ρ iff [[x ` e]]ρσvσ′ ∈ dom(σ)
(σ, v, σ′) ∈ [[x ` allocpost(e)]]ρ iff [[x ` e]]ρσvσ′ ∈ dom(σ′)
(σ, v, σ′) ∈ [[x ` ∀x.T]]ρ iff for all u ∈ Val + F . (σ, v, σ′) ∈ [[x, x ` T]]ρ[x := u]

T 4. Meaning of expressions and transition relations

the transition relations is untyped, the types of the free variables are not rele-
vant.The interpretation of object specificationsx ` A,

[[x ` A]] : Env → P(Val × St)

is given in Tab. 5.
We begin with a number of observations about the interpretation.

Lemma 3.2. For all specificationsx ` A, all σ ∈ St and environmentsρ we have
(error, σ) < [[x ` A]]ρ.

Proof. Immediate from the definition of [[x ` A]]ρ. �

Lemma 3.3 (Soundness of Subspecification).Supposex ` A <: B. Then, for
all environmentsρ, [[x ` A]]ρ ⊆ [[x ` B]]ρ for valuesv.

Proof. This follows by induction on the derivation ofx ` A <: B. The cases for
reflexivity and transitivity are immediate. For the case where bothA andB are
object specifications we need a similar lemma for transition relations:

If x ` T andx ` T′ then`fo T → T′ implies

[[x ` T]]ρ ⊆ [[x ` T′]]ρ (3)

12

[[x ` A]] : Env → P(Val × St)

[[x ` Bool]]ρ = BVal × St

[[x ` [fi : Ai
i=1...n, m j : ς(yj)y

4.1 Result Specifications, Store Specifications and a Tentative Semantics
A store specificationΣ assignsclosedspecifications̀ A to (a finite set of) loca-
tions:

Definition 4.1 (Store Specification).A recordΣ ∈ RecLoc(Spec) is astore spec-
ification if for all l ∈ dom(Σ), Σ.l = A is a closed object specification.

Because we focus on closed specifications in the following, we need a way
to turn the componentsBj of a specification [fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...m]

Observe that for allA, if Σ′ < Σ then||A||Σ ⊆ ||A||Σ′ . We obtain the following
lemma aboutcontext extensions.

Lemma 4.5 (Context Extension).If ρ ∈ ||Γ||Σ andΓ, x:A ` ok and v∈ ||A[ρ/Γ||Σ
thenρ[x := v] ∈ ||Γ, x:A||Σ.

Proof. The result follows immediately from the definition once we showρ[x :=
v] ∈ ||Γ||Σ. This can be seen to hold sincex < dom(Γ), hence for ally:B in Γ we
know thatx is not free inB and we must haveB[ρ[x := v]/Γ] ≡ B[ρ/Γ]. �

We want to interpret store specifications as predicates over stores, as follows.

Definition 4.6 (Store Predicate, Tentative).Let P = P(St)RecLoc(Spec) denote
the collection of predicates onSt, indexed by store specifications. We define a
functionalΦ : Pop × P → P as follows.

σ ∈ Φ(Y, X)Σ :⇔
∀l ∈ dom(Σ) whereΣ.l = [fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...m] :

(F) σ.l.fiX:

resulting object has to be allocated in the store, and so a proper extension of the
original store specificationΣ has to be found.

So letA0 ≡ [m1 : ς(y)[]::False] and Ai+1 ≡ [m1 : ς(y)Ai ::True]. In partic-
ular, this means that the methodm1 of objects satisfyingA0 mustdiverge. The
methodm1 of an object satisfyingAi returns an object satisfyingAi−1. Hence,
for such objectsx, it is possible to have method callsx.m1.m1 . . . m1 at mosti
times, of which thei-th call must necessarily diverge (the others may or may not
terminate). The example below uses the fact that we can construct an ascending
chain of objects for which the firsti − 1 calls indeed terminate, and therefore do
notsatisfyAi−1. Then, the limit of this chain is an objectx for which an arbitrary
number of callsx.m1.m1 . . . m1 terminates, and which therefore does not satisfy
anyof theAi :

SetΣ′′
i ≡ Σ, l : Ai and letσ ∈ [[Σ]] denote some store satisfyingΣ. Moreover,

define

σi = {|l0 = {|m0 = λ .(l, σ + σ′′
i)|}|}

whereσ′′
0 = {|l = {|m1 = λ .⊥|}|} andσ′′

i+1 = {|l = {|m1 = λ .(l, σ + σ′′
i)|}|}, and let

σ = tiσi . Finally, defineX, Y ∈ P by

XΣ′′
i
= {σ + σ′′

i }, for i ∈ N

XΣ̂ = ∅, for all otherΣ̂

YΣ = {σ}

YΣ̂ = ∅, for all otherΣ̂

By construction, bothX andY are admissible in every componentΣ̂. By induc-
tion one obtainsσ′′

0 v σ′′
1 v . . . , thereforeσ0 v σ1 v . . . in Φ(Y, X)Σ. Hence we

must showσ ∈ Φ(Y, X)Σ. But this is not the case, since it would entail, by(M2)
and

σ.l.m0(σ) = tiσi .l.m0(σ) = (l, σ + tiσ
′′
i)

that there existsΣ′′ < Σ such thatσ + tiσ
′′
i ∈ XΣ′′ . Clearly this is not the case,

sinceσ + tiσ
′′
i is strictly greater than everyσ + σ′′

i and therefore not in any of
theXΣ′′

i
.

4.3 A Refined Semantics of Store Specifications
We refine the definition of store predicates by replacing the existential quantifier
in (M2) of Definition 4.6 by aSkolem function, as follows: We call the elements
of the (recursively defined) domain

φ ∈ RSF = RecLoc(RecM(St × RSF × Spec⇀ Spec× RSF)) (4)

choice functions, or Skolem Functions. The intuition is that, given a storeσ ∈

[[Σ]], if σ′ ∈ [[Σ′]] with choice functionφ′, for some extensionΣ′ < Σ and the

16

method invocationσ.l.m(σ′) terminates, thenφ.l.m(σ′, φ′,Σ′) = (Σ′′, φ′′) yields
a store specificationΣ′′ < Σ′ such thatσ′′ ∈ [[Σ′′]] (and φ′′ is a choice function
for the extensionΣ′′ of Σ). This is again an abstraction of the actual storeσ,
this time abstracting thedynamic effectsof methods wrt. allocation, on the level
of store specifications. Note that the argument storeσ′ is needed in general to
determine the resulting extension of the specification, since allocation behaviour
may depend on the actual values of fields, for example.

We use the domainRSF of choice functions explicitly in the interpretation
of store specifications below. This has the effect of constraining the existential
quantifier to workuniformly on the elements of increasing chains, hence pre-
cluding the counter-example to admissibility of the previous subsection.

Definition 4.7 (Store Predicate). Let P = P(St × RSF)RecLoc(Spec) denote the
collection of families of subsets ofSt × RSF, indexed by store specifications. We
define a functionalΦ : Pop × P → P as follows.

(σ, φ) ∈ Φ(Y, X)Σ :⇔
(1) dom(Σ) = dom(φ) and∀l ∈ dom(Σ). dom(π2(Σ.l)) = dom(φ.l), and
(2) ∀l ∈ dom(Σ) whereΣ.l = [fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...

we obtainσ.l.fi ∈ ||Ai ||Σ by assumption (σ j , φ j) ∈ Φ(Y, X)Σ. Next, supposeΣ′ <
Σ, (σ′, φ′) ∈ YΣ′ andσ.l.m j(σ′) = (v, σ′′) ↓. By definition of σ as

⊔
k σk and

continuity, we must haveσk.l.m j(σ′) = (v, σ′′
k)↓ for sufficiently largek, and

(v, σ′′) =
⊔

k σk.l.m j(σ′) =
⊔

k(v, σ′′
k)

By assumption, for all sufficiently largek, φk.l.m j(σ′, φ′,Σ′) = (Σ′′
k , φ′′

k) with
Σ′′

k < Σ′ and

• (πVal(σ′), v, πVal(σ′′
k)) ∈ [[T j [l/T

FSt,RSF(e, e)(σ, φ) ∈ Φ(Y′, X′)Σ which proves (

5 Soundness

5.1 Preliminaries

Recall from the previous section that the semantics of store specifications is de-
fined in terms of the semantics||A||Σ for result specificationsA that does not
mentionSt at all. The following key lemma establishes the relation between
store specifications and object specifications [[` A]] as defined in Section 3.3:

Lemma 5.1. For all object specifications A, store specificationsΣ, storesσ, and
locations l, ifσ ∈ [[Σ]] and l ∈ dom(Σ) such that̀ Σ.l <: A then(l, σ) ∈ [[A]] .

Proof. By induction on the structure ofA. BecauseA is an object specification
it is necessarily of the form

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]

We have to show that (l, σ) ∈ [[` A]], i.e., that

• (σ.l.fi , σ) ∈ [[` Ai]] for all 1 ≤ i ≤ n and

• if σ.l.m j(σ) = (v, σ′) then (v, σ′) ∈ [[y j ` Bj]](y j 7→ l) and (πVal σ, v, πVal σ′) ∈

[[y j ` T j]](y j 7→ l) for all 1 ≤ j ≤ m.

From the subtyping relation andΣ.l <: A we find

Σ.l ≡ [fi :Ai
i=1...n+p, m j :ς(y j)B

′
j ::T

′
j
j=1...m+p]

wherey j ` B′
j <: Bj andy j `fo T′

j → T j .
For the first part, by Definition 4.7(F) andσ ∈ [[Σ]] we haveσ.l.fi ∈ ||Ai ||Σ.

If Ai is Bool then from||Bool||Σ = BVal, hence, (σ.l.fi , σ) ∈ [[` Bool]]. Otherwise
Ai is an object specification and the definition of||Ai ||Σ implies

` Σ.(σ.l.fi) <: Ai

again by Definition 4.7(F). Hence by induction hypothesis we obtain (σ.l.fi , σ) ∈

[[` Ai]] as required.
For the second part, suppose thatσ.l.m j(σ) = (v, σ′′). From Definition 4.7

part(M2) and(M3), and the assumptionσ ∈ [[Σ]], we find v ∈

∣∣∣∣∣∣∣∣B′
j [l/y j

[[` B′
j [l/y j]]]. Thus,

(v, σ′′) ∈ [[` B′
j [l/y j]]] = [[y j ` B′

j]](y j 7→ l) Lemma 4.2

⊆ [[y j ` Bj]](y j 7→ l) Lemma 3.3

as required.
Finally, by Definition 4.7(M1) we obtain

(πVal σ, v, πVal σ′′) ∈ [[` T′
j [l/y j]]] = [[y j ` T′

j]](y j 7→ l) Lemma 4.2

⊆ [[y j ` T j]](y j 7→ l) soundness of̀fo

This concludes the proof. �

We can now define the semantics of judgements of Abadi-Leino logic and
prove the key lemma.

Definition 5.2 (Validity). Γ � a : A :: T if and only if for all store specifications
Σ ∈ RecLoc(Spec), for all ρ ∈ ||Γ||Σ and all σ ∈ [[Σ]] , if [[a]]ρσ = (v, σ′)

Thus,

(πVal σ, v′, πVal σ′, πVal σ′′) ∈

[[x, x ` T′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]]] ρ[x := v]

since there are no occurrences ofselpost(·, ·), allocpost(·

Note that by the subtyping rules,A ≡ Bool if and only if A′ ≡ Bool. In this
case(S3)follows directly from(S3’). In the case whereA′ is an object speci-
fication, assumption [Γ

(S1) φ(σ′, φ′,Σ′) = (Σ′, φ′)

(S2) (σ′′, φ′) = (σ′, φ′) ∈ fix(Φ)Σ′

(S3) v= true ∈ BVal = ||A||Σ′

(S4) (πVal(σ′), true, πVal(σ′′)) ∈ [[[Γ] ` Tres(true)]]ρ by definition

as required. The case wherea is false is analoguous.

• Conditional
By a case distinction, depending on whether the value of the guardx is true
or false.

• Let
Suppose(H1) Γ ` a : A :: T has been derived by an application of the (Let)
rule. Hence,a is let x = a1 in a2. Assume that

(H2) Σ is a store specification, and

(H3) ρ ∈ ||Γ||Σ

Now recall the rule for this case,

Γ ` a1:A1::T1 Γ, x:A1 ` a2:A::T2 [Γ] ` A [Γ] ` T
`fo T1[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T2[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ ` let x = a1 in a2:A::T

By the premiss of this rule we must have

(H1’) Γ ` a1 : A1 :: T1

(H1”) Γ, x:A1 ` a2 : A :: T2

By induction hypothesis applied to(H1’) there isφ1 ∈ SF s.t. for allΣ′ < Σ,
(σ′, φ′) ∈ fix(Φ)Σ′ with [[a1]]ρσ′ = (v̂, σ̂), the conclusions of the lemma hold:

(S1’) there existŝΣ < Σ′ andφ̂ ∈ RSF s.t.φ(σ′, φ′,Σ′) = (Σ̂, φ̂)

(S2’) (σ̂, φ̂) ∈ fix(Φ)Σ̂

(S3’) v̂1(˛)]TJ/J/F103 9.963 Tf 3.318lTJ/F101 9.9663 .317 0 Td[(;)13 9.963 Tf 2.491 0 Td[(;)]TJ/F27 9.963 Tf 4.151 0 Td[(˙)]TJ/F9009 0 Td[(963 Tf90 9.963 Tf 9.40541 0 Td[(T)]TJ/F27 9.963 Tf -214.195 -11.Td[(post)]TJ/F90 9.963 Tf 11 9.9809 0 Td[(963 Tf90 .494 Td[(:)]TJ/F101 9.963 Tf 5.786 0 Td[(A)]TJ/F6)1cL)]Tce 3.616 Td0 .494 Td[(:)]TJ/F101 9.963 Tf 5.785(ˆ)]TJ/F103 9.963 T16l964 0 Td[(Ł)]TJ/F2789l51′��� 6.974 Tf 5.22 -1.495 Td[(V)111(al)]TJ/F90 9.963 Tf 9.795 1.495 Td[(()]TJ/F103 9.963 Tf 3.317 0 Td[(σ)]TJ/F27 6.974 Tf 6.765 3.616 8d[(0)]TJ/F90 9.963 Tf 2.918 -3.616 Td[())]TJ/F103 9.963 Tf 3.317 0 Td[(,)]TJ/F101 9.963 Tf 4.151 0 Td[(true)]TJ/F103 9.9f 3.019 0 Td[(8/F95 9.963)]TJ/J/F103 9.963 Tf 3.318lTJ/F101 9.9663 f 5.875 0 Td[(�-1.495 Td[(V)111(al)]TJ/F90 9.963 Tf 9.715 1.495 Td[(()]TJ/F103 9.963 Tf 3.317 0 Td[(σ)]TJ/F2733,)]TJ/F90 9.963 Tf 12.285 1.763 Td[(�)]he conclusions of t0 9.963 Tf 8.107 0 Td[([)127([[)]TJ/F150 9.963 Tf 8.294 0 Td[(�)]T6/F90 9.9663 Tf90 .494Td[(])]TJ/F27 9.963 Tf 6.085 0 Td[0 TdJ/F101 9.963 Tf 7.41 0 Td[(T)]4J/F27 9.963 Tf -214.195 -11.617 Td[(`)]TJ/F1063 Tf 13.948 1.495 Td[(�)]TJ/F103 3 9.963 Tf 4.975 0 Td[(ρσ)]TJ/F27 6.974 Tf 11.825 34y de�nitionIn-250(wearticular)40(2 Td[(�y.963 Tf 9.287 0 Td[((T).318 0 Td[(v))]TJ/F101 9.963 Tf -0.653 2[)1.318 0 T63 TTd[(L -17.25[(,9,F95 9.963 Tf 4.151 0[(.9924.896 0 Td[(��nition)]TJ -200.5 Td1)]TJ/F90 9.963Tf 4.423 0 Td[(815J/F101 9.963 Tf 9.372 0 Td[(a)]TJ/F90 .3 9.963 Tf 5.539 0 true)]TJ/F27 9.969.963 Tf 3.317 5695 9.963)]TJ/J/F103 9.963 Tf 3.318lTJ/F101 9.9663 f 3.019 0 Td[(A2dJ/F101 9.963 Tf 7.41 0 Td[(T)]4J/F27 9 2.491 0 T85 Td[(�)]TJ/F27 9.963 Tf 5.539 -0.035 Td[(jj)]TJ/F95 6.Tf 4.649 0 Td[(x)]TJ/F90 9.963 Tf 4.454 0 Td[(.)]TJ/F101 9.963 Tf 3.018 0 Td[(A)]TJ/F90 6.974 Tf 6.087 -1.494 Td[(1)]TJ/F27 9.963 Tf 6.752 1.494 Td[(`)]TJ/F101 9.963 Tf 7.41 04.975 0 T6TJ/F101 9.963 Tf 5.785(�)]TJ/F103 9.963 T16l964 0 Td[(�)]TJ/F2789l51)]TJ/F27 9.963 Tf on)]TJ -200.5.70 T5225.549 0 Td[(T�fore2 Td[4 Td[(as390 61(ducto)]TJ/s391 9.963 Tf 141.843 0 Td[((43))]TJ/F90 9.963 Tf 8868460 Td[(�)]TJ]TJ/F103 9.9633 Tf -0.653 6F278982 Td[(�)]TJ3J/F90 6.974 Tf 5.479 -1.4601Td[(1)]TJ/F27 9.963 Tf 6.93 1.4936016 Td[(0)]TJ)]TJ/J/F103 9[(�)]TJ/F4]TJ/F101 v.963 Tf 7.41 0 Td[(T41 Td[(true)]T0 9.963 Tf 21.42 0 Td[(62t.)-260(for)-259(all)]TJ/F95 9.]TJ/F101 TJ/F90 99.992001)]nction,)-280(�323J/F27 6.974 Tf 5.798 328.025d[(0)]TJ/F90 9.963 Tf 2.918 -3.616 Td[(7)]TJ/F95 9.963 Tf 9.281 7.0 0 TTd[(7)]TJ/<or)-259(all)]TJ/F95.4699.182 Td[(�)]TJ/F103 9.963 Tf 5.799 Td[(,)]TJ/F90 9.963 T9.963 Tf 3.3170)]TJ/F90 63 TT323J/F27T324TJ/F2733,1 Td[(ˆ)]TJ/F103 9.963 Tf -1.37 -6.763 4d[(`)]TJ/F90 9.963 Tf 5.48 0 Td[(,1)]TJ/F101 9.963 Tf -247.812 -17.252 Td[((S2’.317 0 Td[(;)14412x)]TJ/F90 9.963 Tf 9.405 021.43(Φ)Σ�2 : 816J/F101 9.963 Tf 3.018 0 Td849 6TJ/F90 :3 9.963 Tf 5.539 0 tr78982 Td[=or allA2dJ/F101 9.33;00

(S1”) there existsΣ′′ < Σ̂ andφ′′ ∈ RSF s.t.φv̂(σ̂, φ̂, Σ̂) = (Σ′′, φ′′)

(S2”) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3”) v ∈ ||A[ρ[x := v]/Γ, x:A1]||Σ′′

(S4”) (πVal(σ̂), v, πVal(σ′′)) ∈ [[[Γ, x:A1] ` T2]]ρ

Now defineφ ∈ SF for all σ′, φ′ andΣ′ by

φ(σ′, φ′,Σ′) =

jj,1 ˚.8201 9.963 Tf 4.115 Td[(;)]TJ/F955.663 63 Tf 4.423 12.285 1.763 Td[(ˆ)30 9.963 Tf 5-66TJ 0 -2.282 Td[17 Td[(and)]TJ/F95 9. 5.22 -1.494 Td[(V)111(al)]TJ/F90 006;(S4”)

(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[Γ ` T]]ρ, by (9)

as required.

• Object
Suppose(H1): Γ ` a : A :: T has been derived by an application of rule the
(object construction) rule. Necessarilya ≡ [fi = xi

i=1..n, m j = ς(y j)b j
j=1..m].

Suppose that

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

We recall the object introduction rule,

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]
Γ ` xi :Ai :: Tres(xi)i=1...n Γ, y j :A ` b j :Bj ::T j

j=1...m

Γ ` [fi = xi
i=1...n, m j = ς(y j)b j

j=1...m]:A::Tobj(f1 = x1 . . . fn = xn)

from which we see thatA is [fi :Ai , m j :Bj ::T j], that T is Tobj(f1 = x1 . . . fn =
xn) and that

(H1’) Γ ` xi : Ai :: Tres(xi) for 1 ≤ i ≤ n

(H1”) Γ, y j :A ` b j : Bj :: T j for 1 ≤ j ≤ m

We have to show that there isφ ∈ SF s.t. for allΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′

with [[a]]ρσ′ = (v, σ′′), (S1)-(S4)hold.
From(H3) and Lemma 4.5 we know that for allΣ̂ < Σ andl0 < dom(Σ̂),

ρ[y j := l0] ∈
∣∣∣∣∣∣Γ, y j :A

∣∣∣∣∣∣
Σ̂,l0:A

Hence by induction hypothesis on(H1”) , there isφ
j
l0

∈ SF for all 1 ≤

j ≤ m s.t. for allΣ1 < (Σ̂, l0:A[ρ/Γ]), for all (σ1, φ1) ∈ fix(Φ)Σ̂,l0:A[ρ/Γ] with
[[b j]]ρ[y j := l0]σ1 = (v2, σ2) ↓, we obtain the conclusions(S1)-(S4)of the
lemma, i.e.,

(S1’) there existsΣ2 < Σ1 andφ2 ∈ RSF s.t.φ j
l0
(σ1, φ1,Σ1) = (Σ2, φ2)

(S2’) (σ2, φ2) ∈ fix(Φ)Σ2

(S3’) v2 ∈
∣∣∣∣∣∣Bj [ρ[y j := l0]/Γ, y j :A]

∣∣∣∣∣∣
Σ2

(S4’) (πVal(σ1), v2, πVal(σ2)) ∈ [[[Γ, y j :A] ` T j]]ρ[y j := l0]

We show that(S1)–(S4)hold. LetΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ̂ and suppose
[[a]]ρσ′ = (v, σ′′). By9J/F90 9.963 T050S1)–Ł

(F) By assumption(H1’) andρ ∈ ||Γ||Σ we know that there is̀ Ai
′ <: Ai

for all 1 ≤ i ≤ n s.t. xi :Ai
′ in Γ. Hence,

σ′′.l0.fi = ρ(xi) ∈
∣∣∣∣∣∣Ai

′
∣∣∣∣∣∣
Σ

⊆ ||Ai ||Σ ⊆ ||Ai ||Σ′′

(M) Let 1 ≤ j ≤ m. SupposeΣ1 < Σ′′, let (σ1, φ1) ∈ fix(Φ)Σ1 and suppose
σ′′.l0.m j(σ1) = (v2, σ2). Sinceσ′′.l0.m j = [[b j]]ρ[y j := l0]σ1 and
Σ1 < Σ′, the assumption (σ1, φ1) ∈ fix(Φ)Σ′ and the construction of
φ′′ giveΣ2 andφ2 s.t.

∗ φ′′.l0.m j(σ1, φ1,Σ1) = φ
j
l0
(σ1, φ1,Σ1) = (Σ2, φ2), by (S1’)

∗ (σ2, φ2) ∈ fix(Φ)Σ2, by (S2’)

∗ v2 ∈
∣∣∣∣∣∣Bj [ρ[y j := l0]/Γ, y j :A]

∣∣∣∣∣∣
Σ2
=

∣∣∣∣∣∣Bj [ρ/Γ][l0/y j]
∣∣∣∣∣∣
Σ2

, by (S3’)
and the substitution lemma, Lemma 4.2

∗ (πVal(σ1), v2, πVal(σ2)) ∈ [[[Γ, y j :A] ` T j]]ρ[y j := l0] which equals
[[T j [ρ/Γ][l0/y j]]], by (S4’)and the substitution lemma

Thus we have shown (σ′′, φ′′) ∈ fix(Φ)Σ′′ , i.e.,(S2)holds.

• Method Invocation
SupposeΓ ` a : A :: T is derived by an application of the method invocation
rule:

Γ ` x:[m:ς(y)A′::T′]::Tres(x)
Γ ` x.m:A′[x/y]::T′[x/y]

Necessarilya is of the formx.m and there areA′ andT′ s.t.A ≡ A′[x/y] and
T ≡ T′[x/y]. So suppose

(H1) Γ ` a : A′[x/y] :: T′[x/y]

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

Defineφ ∈ SF using “self-application” of the argument,

φ(σ′, φ′,Σ′) = φ′.ρ(x).m(σ′, φ′,Σ′) (12)

Now let Σ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′ and suppose [[a]]ρσ′ = σ′.ρ(x).m(σ′) =
(v, σ′′) terminates. We show that(S1)-(S4)hold.

By the hypothesis of the method invocation rule,

Γ ` x:[m:ς(y)A′::T′]::Tres(x) (H1’)

Since this impliesx:B ∈ Γ for some [Γ] ` B <: [m : ς(y)A′ :: T′], by
assumption(H3) this entails

` Σ.(ρ(x)) <: [m : ς(y)A′ :: T′] [ρ/Γ]

29

i.e., there areAi , A′′, Bj andT j , T′′ such that

` Σ.ρ(x) ≡ [fi :Ai , m j :ς(y j)Bj :: T j , m:ς(y)A′′::T′′]

where

y ` A′′ <: A′[ρ/Γ] and `fo T′′ → T′[ρ/Γ] (13)

Now assumption (σ′, φ′) ∈ fix(Φ)Σ′ with equation (12) implies that there
areΣ′′, φ′′ s.t.

(S1) φ(σ′, φ′,Σ′) = φ′.(ρ(x)).m(σ′, φ′,Σ′) = (Σ′′, φ′′)

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3’) v∈ ||A′′[ρ(x)/y]||Σ′′

(S4’) (πVal(σ′), v, πVal(σ′′)) ∈ [[` T′′[ρ(x)/y]]]

By transitivity of <: , equation (13), Lemma 4.2 and(S3’)

v ∈
∣∣∣∣∣∣A′[ρ/Γ][ρ(x)/y]

∣∣∣∣∣∣
Σ′′

SinceA′[ρ/Γ, ρ(x)/y] ≡ A′[x/y][ρ/Γ] we also have

(S3) v∈ ||A′[x/y][ρ/Γ]||Σ′′ = ||A[ρ/Γ]||Σ′′

Similarly, by (13) and(S4’),

(πVal(σ
′), v, πVal(σ

′′)) ∈ [[T′′[ρ(x)/y]]] ⊆ [[T′[ρ/Γ][ρ(x)/y]]]

= [[[Γ] ` T[x/y]]] ρ (S4)

which was to show.

• Field Selection
Similar. φ can be chosen asφ(σ′, φ′,Σ′) = (φ′,Σ′).

• Field Update
Suppose

(H1) Γ ` a

In particular,a is of the formx.fk := y andT is Tupd(x, fk, y). From the seman-
tics of [[a]]ρσ′, this meansv = ρ(x) ∈ Loc and

σ′′ = σ′[v := σ′.v[fk := ρ(y)]] (14)

We show that(S1)-(S4)hold.
By (H3), ρ(x) ∈ ||A[ρ/Γ]||Σ ⊆ ||A[ρ/Γ]||Σ′ . Then by construction ofφ,

and (14),

(S1) φ(σ′, φ′,Σ′) = (Σ′, φ′)

(S3) v= ρ(x) ∈ ||A[ρ/Γ]||Σ′

(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[[Γ] ` T]]ρ, from the semantics given in Tab. 4

It remains to show(S2), (σ′′, φ′) ∈ fix(Φ)Σ′ .
By assumption (σ′, φ′) ∈ fix(Φ)Σ′ , condition (1) of Definition 4.7 is satis-

fied. As for condition (2), supposel ∈ dom(Σ′) s.t.

Σ′.l ≡ [gi :A
′
i
i=1...p, n j :ς(y j)B

′
j :: T′

j
1...q]

(F) We distinguish two cases:

– Casel = ρ(x) andgi = fk. Then, by (14),σ′′.l.gi = ρ(y). By (H3),
ρ(x) ∈ ||A[ρ/Γ]||Σ ⊆ ||A[ρ/Γ]||Σ′ , which entails

` Σ′.l <: A[ρ/Γ]

and in particular, by the definition of the subspecification relation,
A′

k ≡ Ak[ρ/Γ]. Note thatinvariance of subspecificationin the field
components is needed to conclude this. Now again by(H3),

ρ(y) ∈ ||Ak[ρ/Γ]||Σ ⊆ ||Ak[ρ/Γ]||Σ′ =
∣∣∣∣∣∣A′

k

∣∣∣∣∣∣
Σ′

Hence,σ′′.l.gi ∈
∣∣∣∣∣∣A′

i

∣∣∣∣∣∣
Σ′ as required.

– Casel , ρ(x) or gi , fk. Thenσ′′.l.gi = σ′.l.gi , by (14). Hence, by
assumption (σ′, φ′) ∈ fix(Φ)Σ′ , we haveσ′′.l.gi ∈

∣∣∣∣∣∣A′
i

∣∣∣∣∣∣
Σ′ .

(M) Let Σ′′ < Σ′, let (σ1, φ1) ∈ fix(Φ)Σ′′ and supposeσ′′.l.n j(σ1) = (v2, σ2).
Then, by assumption (σ′, φ′) ∈ fix(Φ)Σ′ and the fact thatσ′′.l.n j = σ′.l.n j

by (14), we obtain thatφ′.l.n j(σ1, φ1,Σ′′) = (Σ2, φ2) s.t.Σ2 < Σ′′ and

(M1) (πVal(σ1), v2, πVal(σ2)) ∈ [[T′
j [l/y j]]]

(M2) (σ2, φ2) ∈ fix(Φ)Σ2

(M3) v2 ∈

∣∣∣∣∣∣∣∣B′
j [l/y j]

∣∣∣∣∣∣∣∣
Σ2

as required.

which concludes the proof. �

31

5.3 Soundness Theorem

With Lemma 5.1 and Lemma 5.4, proved in Subsections 5.1 and 5.2, it is now
easy to establish our main result:

Theorem 5.5 (Soundness).If Γ ` a : A :: T thenΓ � a : A :: T.

Proof. SupposeΓ ` a : A :: T, and letΣ ∈ RecLoc(Spec) be a store specification
and supposeρ ∈ Env s.t. ρ ∈

ness”.

A, B ::= > | Bool | [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m] | µ(X)A

A, B ::= A | X

whereX ranges over an infinite setTyVarof specification variables.X is bound
in µ(X)A, and as usual we identify specifications up to the names of bound vari-
ables.

In addition to specification contextsΓ we introduce contexts∆ that contain
specification variables with an upper bound,X <: A, whereA is either another
variable or>. In the rules of the logic we replaceΓ ` . . . by Γ;∆ ` . . . , and the
definitions of well-formed specifications and well-formed specification contexts
are extended, similar to the case of recursive types [1].

Γ;∆ ` Y X < Γ

Γ;∆, X <: Y ` ok
Γ;∆ ` ok X < Γ

Γ;∆, X <: > ` ok

and
Γ;∆, X <: A,∆′ ` ok
Γ;∆, X <: A,∆′ ` X

Γ;∆, X <: > ` A
Γ;∆ ` µ(X)A

Γ;∆ ` ok
Γ;∆ ` >

and we often write∆, X for ∆, X <: >.
Subspecifications for recursive specifications are obtained by the “usual” re-

cursive subtyping rule [3], and> is the greatest specification,

Γ;∆, Y <: >, X <: Y ` A <: B
Γ;∆ ` µX.A <: µY.B

Γ;∆ ` A
Γ;∆ ` A <: >

As will be seen from the semantics below, in our model a recursive specification
and its unfolding are not just isomorphic but equal, i.e., [[µX.A]] = [[A[(µX.A)/X]]].
Because of this, we do not need to introducefold andunfoldterms: We can deal
with (un)folding of recursive specifications through the subsumption rule once
we add the following subspecifications,

fold
Γ;∆ ` µX.A

Γ;∆ ` A[(µX.A)/X] <: µX.A
unfold

Γ;∆ ` µX.A
Γ;∆ ` µX.A <: A[(µX.A)/X]

We will prove their soundness below.

6.1 Existence of Store Specifications
Next, we adapt our notion of store specification to recursive specifications. The
existence proof is very similar to the one given in Section 4, however, for com-
pleteness we spell it out in detail below.

Definition 6.1. A store specification is a recordΣ ∈ RecLoc(Spec) such that for
each l∈ dom(Σ),

Σ.l = µ(X)[fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]

33

is a closed (recursive) object specification.

i.e., f (
∧

i xi) =
∧

i f (xi), the greatest fixed point can be obtained as

gfp(f) =
∧

{ f n(>) | n ∈ N} (15)

where> is the greatest element ofL: Writing α =
∧

{ f n(>) | n ∈ N} it is
immediate thatf (α) =

∧
{ f n+1(>) | n ∈ N} =

P  M. [[Γ;∆ ` A]] preserves meets of descending chains:

η0 ≥ η1 ≥ . . . ⇒ [[Γ;∆ ` A]]ρ(
∧

i ηi) =
⋂

i [[Γ;∆ ` A]]ρηi

In particular, this lemma shows that the greatest fixed point used in Defini-
tion 6.4 exists, by the observations made above.

Proof. We can show both properties simultaneously by induction on the structure
of A. The only interesting case is whereA is µ(X)B.

To show the first part,Monotonicity , note that the assumptionη1 ≤ η2 entails

η1[X = χ1] ≤ η2[X = χ2] for all χ1 ⊆ χ2 ∈ Adm(Val × St)

So for fi : Adm(Val × St) → Adm(Val × St) defined by

fi(χ) = [[Γ;∆, X ` B]]ρηi [X = χ], i = 1, 2

we obtain from the induction hypothesis onB that fi is monotonic, preserves
meets, andf1 ≤ f2. By the observations made above,gfp is monotonic which
yieldsgfp(f1) ⊆ gfp(f2). Thus

[[Γ;∆ ` µ(X)B]]ρη1 = gfp(f1) ⊆ gfp(f2) = [[Γ;∆ ` µ(X)B]]ρη2

which concludes the proof �

Lemma 6.6 (Substitution). For all Γ;∆, X ` A,Γ;∆ ` B, ρ andη,

[[Γ;∆, X ` A]]ρ(η[X=[[Γ;∆ ` B]]ρη]) = [[Γ;∆ ` A[B/X]]] ρη

Proof. By induction onA. �

6.3 Syntactic Approximations

Recall the statement of Lemma 5.1, one of the key lemmas in the proof of the
soundness theorem:

for all σ,Σ, l and ` A, if σ ∈ [[Σ]] and ` Σ.l <: A then (l, σ) ∈ [[` A]] (18)

In Section 5 this was proved by induction on the structure ofA. This inductive
proof cannot be extended directly to prove a corresponding result for recursive
specifications: The recursive unfolding in cases(F) and(M3) of Definition 6.2
would force a similar unfolding ofA in the inductive step, thus not necessarily
decreasing the size ofA.

Instead, we consider finite approximations as in [3], where we get rid of
recursion by unfolding a finite number of times and then replacing all remaining
occurrences of recursion by>. We call a specificationnon-recursiveif it does
not contain any occurrences of specifications of the formµ(X)B.

Definition 6.7 (Approximations). For each A and k∈ N, we define A|kB.Proof.

Γ, yj ` T j
j=1...m+q

Γ ;∆ ` Ai
i=1...n+p Γ ;∆ ` Ai <: A′

i
i=1...n Γ, yj ` T′

j
j=1...m

Γ, yj ;∆ ` Bj
j=m+1...m+q Γ, yj ;∆ ` Bj <: B′

j
j=1...m

`fo T j → T′
j
j=1...m

Γ;∆ ` [fi : Ai
i=1...n+p, m j : ς(yj)Bj ::T j

j=1...m+q] <: [fi : A′
i
i=1...n, m j : ς(yj)B′

j ::T
′
j
j=1...m]

T 6. The generalised object subspecification rule

invariance in field specifications. For example, ifA ≡ [f1 : X, f2 : Bool] then

µ(X)µ(Y)A|2 = [f1 : µ(X)µ(Y)A, f2 : Bool]|2

= [f1 : µ(X)µ(Y)A|1, f2 : Bool|1]

= [f1 : [f1 : µ(X)µ(Y)A, f2 : Bool]|1, f2 : Bool]

= [f1 : [f1 : µ(X)µ(Y)A|0, f2 : Bool|0], f2 : Bool]

= [f1 : [f1 : >, f2 : >], f2 : Bool]

By inspection of the rules,̀ µ(X)µ(Y)A <: µ(X)µ(Y)A|2 requires to show

Γ;∆ ` [f1 : [f1 : µ(X)µ(Y)A, f2 : Bool], f2 : Bool] <: [f1 : [f1 : >, f2 : >], f2 : Bool]

for appropriateΓ and∆. But subspecifications of object specifications can only
be derived for equal componentsf1 with the rules of Sect. 3.

Therefore we consider the more generous subspecification relation that also

• A is µ(X)B. Then, by induction hypothesis,

Γ;∆ ` B[A/X] <:∗ B[A/X]|k

By definition of approximations, the latter equalsA|k. Moreover,

Γ;∆ ` A <:∗ B[A/X]

by the (unfold) rule, and transitivity then yieldsΓ;∆ ` A <:∗ A|k.

• A is [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]. By definition,

A|k = [fi : Ai |
k−1, m j : Bj |

k−1]

By induction hypothesis we obtain thatΓ;∆ ` Ai <:∗ Ai |
k−1 and thatΓ, y j ;∆ `

Bj <:∗ Bj |
k−1 which entails

Γ;∆ ` [fi : Ai , m j : Bj :: T j] <:∗ [fi : Ai , m j : Bj :: T j]|
k

by the (modified) subspecification rule, as required.

�

Soundness of Subspecification
Soundness of subspecification is easily established:

Lemma 6.9 (Soundness of<:∗). If Γ;∆ ` A <:∗ B, ρ ∈ Env andη � ∆ then
[[Γ;∆ ` A]]ρη ⊆ [[Γ;∆ ` B]]ρη.

Proof. By induction on the derivation ofΓ;∆ ` A <:∗ B.

• (Reflexivity) and (Transitivity) are immediate, as is (Top).

• (Fold) and (Unfold) follow from the fact that the denotation ofµ(X)A is in-
deed a fixed point,

[[Γ;∆ ` µ(X)A]]ρη = gfp(λχ.[[Γ;∆, X ` A]]ρη[X = χ]) by definition

= [[Γ;∆, X ` A]]ρ(η[X = [[Γ;∆ ` µ(X)A]]ρη]) fixed point

= [[Γ;∆ ` A[µ(X)A/X]]] ρη Lemma 6.6

• For the case of (Object), we must have

A = [fi : Ai
i=1...n+p, m j : ς(y j)Bj :: T j

j=1...m+q]

and

B = [fi : A′
i
i=1...n, m j : ς(y j)B

′
j :: T j

j=1...m]

such thatΓ;∆ ` Ai <:∗ A′
i andΓ, y j ;∆ ` Bj <:∗ B′

j and`fo T j → T′
j . By

induction hypothesis,

[[Γ;∆ ` Ai]]ρη ⊆ [[Γ;∆ ` A′
i]]ρη

39

and

[[Γ, y j ;∆ ` Bj]](ρ[y j := l])η ⊆ [[Γ, y j ;∆ ` B′
j]](ρ[y j := l])η

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m andl ∈ Loc. Moreover, by soundness of`fo we
know

[[[Γ], y j ` T j]](ρ[y j := ‘

Proof. By induction on the lexicographic order onl and the number ofµ in head
position.

• l = 0. ClearlyΓ;∆ ` A[B/X]|0 <:∗ > = A[B|k/X]|0.

• l > 0. We consider possible cases forA.

– A is X. ThenΓ;∆ ` A[B/X]|l = B|l <:∗ B|k|l = A[B|k/X]|l .

– A is >, Boolor Y , X. ThenΓ;∆ ` A[B/X]|l = A|l <:∗ A|l = A[B|k/X]|l .

– A is [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]. Then, by induction hypothesis,

Γ;∆ ` Ai [B/X]|l−1 <:∗ Ai [B|k/X]|l−1

and

Γ, y j :A;∆ ` Bj [B/X]|l−1 <:∗ Bj [B|k/X]|l−1

for all 1 ≤ i ≤ n and 1≤ j ≤ m. Hence,

Γ;∆ ` A[B/X]|l <:∗ [fi : Ai [B|k/X], m j : Bj [B|k/X]] |l = A[B|k/X]|l

– A is µ(Y)C, without loss of generalityY not free inB. Then by induction
hypothesis we findΓ;∆ ` C[A/Y][B/X]|l <:∗ C[A/Y][B|k/X]|l . Using
properties of syntactic substitutions, we calculate

A[B/X]|l = µ(Y)(C[B/X])|l

= C[B/X][(µ(Y)(C[B/X]))/Y]|l

= C[B/X][(A[B/X])/Y]|l

= C[A/Y][B/X]|l

and analogouslyC[A/Y][B|k/X]|l = A[B|k/X]|l , which entails the result.

�

Lemma 6.11 (Approximation of Specifications).For all Γ;∆ ` A, ρ ∈ Env and
environmentsη � ∆,

[[Γ;∆ ` A]]ρη =
⋂

k∈N[[Γ;∆ ` A|k]]ρη

Proof. By (19), all that remains to show is [[Γ;∆ ` A]]ρη ⊇
⋂

k∈N[[Γ;∆ ` A|k]]ρη.
We proceed by induction on the lexicographic order on pairs (M, A) whereM is
an upper bound on the number ofµ-binders inA. For the base case,M = 0, by
Lemma 6.8(3) there existsn ∈ N such that for allk ≥ n, A|k = A, and so in fact

[[Γ;∆ ` A]]ρη = [[Γ;∆ ` A|n]]ρη ⊇
⋂

k∈N[[Γ;∆ ` A|k]]ρη

Now suppose thatA contains at mostM + 1 µ binders. We consider cases for
A.

41

6.4 Soundness
After the technical development in the preceding subsection we can now prove
(18). From this result the soundness proof of the logic extended with recursive
specifications then follows, along the lines of the proof presented in Section 5
for finite specifications.

Lemma 6.12. For all σ,Σ, l and ` A, if σ ∈ [[Σ]] and` Σ.l <:∗ A then(l, σ) ∈

[[A]] .

Proof. The proof proceeds by considering finite specifications first. This can
be proved by induction onA

arbitrary extensionsΣ′ < Σ. This will account for the (specifications of) objects
allocated between definition time and call time.

Clearly, not every predicate on stores is preserved. As we lack a seman-
tic characterisation of those specifications that are syntactically definable (asΣ),
specification syntax appears in the definition ofσ ∈ [[Σ]] (Def. 4.7). More an-
noyingly, field update requires subspecifications to be invariant in the field com-
ponents, otherwise even type soundness is invalidated. We do not know how to
express this property of object specifications semantically (on the level of predi-
cates) and need to use the inductively defined subspecification relation instead.

The proof of Theorem 4.8, establishing the existence of store predicates, pro-
vides an explanation why transition relations of the Abadi-Leino logic express
properties of the flat part of stores only: Semantically, a (sufficient) condition
is that transition relations are upwards and downwards closed in their first and
second store argument, respectively.

Abadi and Leino’s logic is peculiar in that verified programs need to preserve
store specifications. Put differently, only properties which are in fact preserved
can be expressed in the logic. In particular, specifications of field values are
limited such that properties like e.g.self.hd ≤ self.tail.hd, stating that a list is
sorted, cannot be expressed. In future work we thus plan to investigate how a
logic can be set up where

• methods are specified by pre-/post-conditions that explicitly state invariance
properties during execution of the method code.

• methods can be specified by pre-/post-conditions that can refer to other meth-
ods. This is important for simulating methods that act like higher-order func-
tions (e.g. the map function for lists).

• methods can have additional parameters.

• method update is allowed. In the setting of Abadi and Leino this would re-
quire that the new method body satisfies the old specification (in order to
establish invariance). More useful would be a “behavioural” update where
result and transition specifications of the overriding method are subspecifi-
cations of the original method.

The results established in this paper pave the way for the above line of research.

Acknowledgement We wish to thank Thomas Streicher for discussions and
comments.

References
[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer, New York, 1996.

[2] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In N. Dershowitz, editor,
Verification: Theory and Practice, pages 11–41. Springer, 2004.

44

[3] R. M. Amadio and L. Cardelli. Subtyping recursive types.ACM Transactions on Programming
Languages and Systems, 15(4):575–631, 1993.

[4] K. R. Apt. Ten years of Hoare’s logic: A survey — part I.ACM Transactions on Programming
Languages and Systems, 3(4):431–483, Oct. 1981.

[5] F. S. de Boer. A WP-calculus for OO. In W. Thomas, editor,Foundations of Software Science
and Computation Structures, volume 1578 ofLecture Notes in Computer Science, pages 135–
149, 1999.

[6] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-oriented
languages: Logical models and tools. In C. Hankin, editor,Programming Languages and
Systems—ESOP’98, 7th European Symposium on Programming, volume 1381 ofLecture Notes
in Computer Science, pages 105–121, Mar. 1998.

[7] C. A. R. Hoare. An Axiomatic Basis of Computer Programming.Communications of the ACM,
12:576–580, 1969.

[8] K. R. M. Leino. Recursive object types in a logic of object-oriented programs. In C. Hankin,
editor,7th European Symposium on Programming, volume 1381 ofLecture Notes in Computer
Science, pages 170–184, Mar. 1998.

