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Abstract

We give sound and complete proof systems for a variety of bisimulation based

equivalences over a message-passing process algebra. The process algebra is a

generalisation of CCS where the actions consist of receiving and sending messages

or data on communication channels; the standard pre�xing operator a:p is replaced

by the two operators c?x:p and c!e:p and in addition messages can be tested by a

conditional construct. The various proof systems are parameterised on auxiliary

proof systems for deciding on equalities or more general boolean identities over the

expression language for data. The completeness of these proof systems are thus

relative to the completeness of the auxiliary proof systems.

1 Introduction

In standard or pure process algebras processes are described in terms of their ability to

perform atomic unanalysed actions. For example

P(= a:P + b:c:P

describes a process which can continually either perform the action a or the sequence of

actions b; c . By a message{passing process algebra we mean a process algebra in which

these actions are given some structure; namely the reception or emission of data values

on communication channels. Thus

Q (= c?x: if x � 0 then d!x:Q else c!(x+ 1):Q

describes a process which can cyclically input a value along the channel c and either

output it along the channel d unchanged or output its successor along c, depending on

whether or not the value concerned is greater than or equal to 0.

The standard approach to providing a semantic basis for these message{passing al-

gebras, advocated for example in [Mil89], is to translate them into an underlying pure

algebra. The central feature of this translation, mapping p to [[p]], is that the input

expression c?x:p is mapped into the term

X

v2V al

c?v:[[p[v=x]]]



where V al is the domain of all data values. Thus the translation of the process Q above

is

R (=

X

n�0

c?n:d!n:R +

X

n<0

c?n:c!(n+ 1):R

This may be taken to be a description in a pure process algebra where we assume that

for each channel name c and for every data-value v, in this case every integer, there are

atomic actions c?v and c!v.

There are two disadvantages in this approach. The �rst is that descriptions which

are in some intuitive sense �nite are translated into processes which are inherently in-

�nite, at least if the domain of possible values, Val, is in�nite; it is necessary to have

in the underlying pure process algebra a summation operator �

I

where I has the same

cardinality as the value domain. Such process algebras are di�cult to use. For example

the standard algorithms and veri�cation tools, see e.g. [CPS89], do not apply and equa-

tional reasoning is di�cult since any proof system based on this approach is of necessity

in�nite. The second disadvantage is that with such translations uniformities which exist

in the object description disappear in the translation. For example the subsequent be-

haviour of Q above after the reception of an input v is described functionally by the term

�x:if x � 0 ! d!x:Q else c!(x+ 1):Q. this uniform treatment of inputs is not apparent

in the translation, R. Although this notion of uniformity is di�cult to de�ne precisely, it

should play a central role in proving properties of message passing systems. The object

of this paper is to develop a semantic theory of message{passing processes which takes

advantage of this uniformity. In particular our semantic theory will apply directly to

the syntax of message{passing processes and will not be mediated by a translation into

an in�nitary language. As a result the associated proof systems will be in some sense

�nitary.

Such theories already exist for value{passing processes. In [HIar] a fully-abstract

denotational model is presented while in [Hen91] a



[Hen91] we design a proof system whose judgements are guarded equations of the form

b � t = u

where b is a boolean expression and t; u are process terms that may contain free data

variables. Semantically this should be read as \under any evaluation of free data variables

that satis�es b t is semantically equivalent to u". The completeness of the proof system

is thus relative to that for the data domain involved. Moreover rather than getting

embroiled in the details of an actual proof system for data expressions we simply assume

the existence of some all powerful mechanism for answering arbitrary questions about

data. On the one hand this enables us to concentrate on the behaviour of processes and

on the other it re
ects what would be a reasonable implementation strategy for a proof

system based on our results; the main proof system would be based on the proof rules

whose applicability is determined by the structure of processes and this main system

would periodically call auxiliary proof systems to establish facts about data expressions.

A simple example of a proof rule from the main system is

b � t

i

= u

i

i = 1; 2

b � t

1

+ t

2

= u

1

+ u

2

while

b j= e = e

0

; b � t = u

b � c!e:t = c!e

0

:u

is a rule which depends on a call to

0

i

i t = u



can not be matched by a corresponding c? move from the second. Each of these general-

isations of strong bisimulation equivalence has a corresponding \weak" version in which

internal moves are abstracted. Thus in all we have four reasonable semantic equivalences

and for each of these we present a corresponding proof system. In the strong cases the

di�erence between early and late is manifested in the slightly di�erent methods for in-

ferring identities involving input pre�xes; the early equivalence requires a stronger proof

rule. On the other hand the weak version of both equivalences can be obtained by adding

to the corresponding proof system the standard � -laws from [Mil89].

The judgements of the proof systems involve open process terms, i.e. terms in which

data variables need to be instantiated before any operational signi�cance can be asso-

ciated with them, but the observational equivalences are only de�ned on closed terms.

Therefore in order to even express the soundness and completeness of the proof sys-

tems we need to generalise these equivalences to open terms. For each of these semantic

equivalences, ', we design a proof system with the property that

b � t = u if and only if t� ' u� for every evaluation � satisfying b.

As usual establishing soundness is straightforward but completeness requires some inge-

nuity. Here we use the approach of [HL92] and introduce symbolic versions of each of

the semantic equivalences which are de�ned directly on open terms. These are expressed

in terms of families of relations over open terms parameterised on boolean expressions

and we show that, for each semantic equivalence ' we consider,

t '

b

u if and only if t� ' u� for every evaluation � satisfying b.

Thus soundness and completeness of the proof systems can be established relative to the

semantic relations '

b

. Using this approach the completeness theorems in particular now

become \symbolic versions" of the standard completeness theorems of [Mil89], although

the details are somewhat more complicated.

We now give a brief outline of the content of the remainder of the paper. In the

next section we de�ne the simple language, give it a concrete operational semantics and

de�ne (early) strong bisimulation. This is followed by a discussion of the proof system

for proving processes bisimilar. We state the soundness theorem for the system and

indicate the di�culty in proving completeness. In the following section, Section 3, we

de�ne the symbolic semantics and the associated symbolic bisimulation equivalence and

prove that it captures precisely the concrete bisimulation equivalence over processes. We

then use this result to show the completeness of the proof system.

In Section 4 we repeat these results for weak bisimulation equivalence where again

it is necessary to develop an appropriate de�nition of weak symbolic equivalence. The

following section outlines corresponding results for a late operational semantics and con-

siders both the strong and weak cases. We end by discussing brie
y how to extend these

results to other language constructs.

Related Work: We end this section with a brief discussion of related work. As

stated previously the approach we have taken is based on that of [Hen91] where a sound

and complete proof system for testing equivalence is developed. Here we tackle various

bisimulation based equivalences and an essential ingredient of the completeness theorems

is the notion of symbolic bisimulation equivalence. This has already been used in [HL92]
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to develop an algorithm for checking whether two message-passing processes are equiv-

alent and in [HL93] for developing a proof system to verify that such processes satisfy

properties described by formulae from a �rst-order modal logic.

The more standard approach to message-passing processes is to translate them into

\pure processes" as outlined at the beginning of this section [Mil89, HR88]. Indeed

in [Bur91] a front-end for the Concurrency Workbench is described which translates

message-passing processes from a language such as ours into \pure processes" which

can be accepted by the Concurrency Workbench and various examples treated using this

approach may be found in [Wal89]. However these approaches require the set of values to

be �nite and even using the boolean value space of two elements leads to an exponential

blow-up in the size of descriptions. We hope that





where a ranges over f�; c?v; c!vg. We use �

e

to denote the maximal (early) strong

bisimulation. This relation generalizes naturally to open terms by letting t �

e

u i�



EQUIV

true � t = t

b � t = u

b � u = t

b � t = u; u = v

b � t = v

EQN

true � t� = u�

t = u is an axiom

CONGR

b � t

i

= u

i

i = 1; 2

b � t

1

+ t

2

= u

1

+ u

2

=

575.Tj
E.349(ue)]TJ
/R288 0.24 Tf
25.2 0 Td
(�)Tj
/R141 0.24 Tf
12.7199 0 Td
(t�)Tj
/R113c.24 Tf
5.28008 0 Td
0=t



S1 X + nil = X

S2 X +X = X

S3 X + Y = Y +X

S4 (X + Y ) + Z = X + (Y + Z)

Figure 3: The Axioms A

1

Proposition 2.3 Suppose x 62 fv(b; c

i

; d

j

); i 2 I; j 2 J . Then from

b � �

i2I

c

i

! �:t

i

= �

j2J

d

j

! �:u

j

infer

b � �

i2I

c

i

! c?x:t

i

= �

j2J

d

j

! c?x:u

j

Proof: For each non-empty K � I let c

K

be the boolean expression ^

k2K

c

k

^

^

k

0

2I�K

:c

k

0

. Then

W

c

K

= true; c

K

^ c

K

0

= false whenever K 6= K

0

. Using Propo-

sition 2.2 we can show that

`

1

�

i2I

c

i

! �:t

i

= t

�

where t

�

denotes �

K

c

K

! t

�

K

and t

�

K

denotes �

k2K

c

k

! �:t

k

. Let u

�

= �

L

d

L

! u

�

L

be

de�ned in a similar manner.

We know b � t

�

= u

�

and therefore for each K;L, b^ c

K

^d

L

� t

�

= u

�

. Again using

Proposition 2.2 we can prove

b ^ c

K

^ d

L

� t

�

= �

k2K

�:t

k

and

b ^ c

K

^ d

L

� u

�

= �

l2L

�:u

l

:

Therefore

b ^ c

K

^ d

L

� �

k2K

�:t

k

= �

l2L

�:u

l

:

Now we can apply E-INPUT to obtain

b ^ c

K

^ d

L

� �

k2K

c?x:t

k

= �

l2L

c?x:u

l

:

By reversing the above argument we have

b ^ c

K

^ d

L

� t

x

= u

x

where t

x

and u

x

denote �

K

c

K

! �

k2K

c?x:t

k

and �

L

d

L

! �

l2L

c?x:u

l

, respectively.

Since

W

K;L

c

K

^ d

L

= true, we can apply CUT to obtain b � t

x

= u

x

. Finally Proposi-

tion 2.2 can be used to transform t

x

and u

x

into the required form. 2

The soundness of the `

1

is given by the following proposition:

Proposition 2.4 If `

1

b � t = u and � j= b then t� �

e

u�

9



�:t

true;�

�!

E

t � 2 f �; c!e j c 2 Chan; e 2 Exp g

c?x:t

true;c?y

�!

E

t[y=x] y 62 fv(c?x:t)

t

b

0

;�

�!

E

t

0

implies b! t

b^b

0

;�

�!

E

t

0

t

b;�

�!

E

t

0

implies t+ u

b;�

�!

E

t

0



(t; u) 2 ESB(S)

b

if whenever t

b

1

;�

�!

E

t

0

with bv(�) \ fv(b; t; u) = ;, there is

a b ^ b

1

-partition B with the property that for each b

0

2 B there exists a

u

b

2

;�

0

�!

E

u

0

such that b

0

j= b

2

and

1. if � = c!e then �

0

= c!e

0

, b

0

j= e = e

0

and (t

0

; u

0

) 2 S

b

0

2. otherwise � = �

0

and (t

0

; u

0

) 2 S

b

0

De�nition 3.1 (Symbolic Bisimulations)

S is an (early) strong symbolic bisimulation if S � ESB(S), where � is point-wise

inclusion. 2

Let �

E

= f�

b

E

g be the largest (early) strong symbolic bisimulation.

The interest in symbolic bisimulations lies in the fact they are de�ned with respect to

the abstract operational semantics, which for �nite terms can be represented as a �nite

transition graph; in contrast with the standard \concrete" bisimulations are de�ned over

in�nite transitions graphs, at least if the set of values is in�nite. In [HL92] we give an

algorithm for checking for this symbolic equivalence. Here we use it to show completeness

of the proof systems. First we relate symbolic and concrete bisimulation equivalence.

Theorem 3.2 1. (Soundness) t �

b

E

u implies t� �

e

u� for every evaluation � such

that � j= b

2. (Completeness) if t� �

e

u� for every evaluation � such that � j= b then t �

b

E

u

Proof: (Outline) The proof follows the corresponding result in [HL92], Theorem 6.5; it

consists in establishing a relationship between symbolic bisimulations and concrete ones.

If S = fS

b

g is a strong symbolic bisimulation let

R

S

= f (t�; u�) j 9b; �(b) = true and (t; u) 2 S

b

g

Soundness follows immediately if we can prove that R

S

is a bisimulation. Conversely if

R is a strong bisimulation let

S

b

= f (t; u) j � j= b () (t�; u�) 2 R g

for any boolean expression b. Completeness follows if we can show that S = fS

b

g is a

symbolic bisimulation.

The proof of these two subsidiary results depends on relating the abstract actions to

the concrete actions. We simply state the required relationships and leave the proofs to

the reader.

1. t�

�

�!

e

q if and only if there exist b; t

0

s.t. � j= b; q �

�

t

0

� and t

b;�

�!

E

t

0

.

2. t�

c!v

�!

e

q if and only if there exist b; e; t

0

and � s.t. � j= b; �(e) = v; q �

�

t

0

� and

t

b;c!e

�!

E

t

0

.

3. t�

c?v

�!

e

q if and only if there exist b; x; t

0

and � s.t. x 62 fv(t); � j= b; r �

�

t

0

�fv=xg and t

b;c?x

�!

E

t

0

.
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2

With this theorem we can now return to the proof system and show its completeness

by proving

t �

b

E

u implies `

1

b � t = u (�)

This provides the converse to Proposition 2.4. The proof of (�) follows the standard

proof of the corresponding \concrete" result, as given in [Mil89], except that now we

work at the symbolic level.

The proof is by induction on the size of terms which is de�ned as follows:

1. j nil j = 0

2. j t+ u j = maxfj t j; j u jg

3. j b! t j = j t j

4. j �:t j = 1 + j t j

We also need the notion of normal form:

De�nition 3.3 t is a normal form, or in normal form, if it has the form �

i

b

i

! �

i

:t

i

and each t

i

is in normal form. 2

Lemma 3.4 For every term t there exists a normal form t

0

such that fv(t) =

fv(t

0

); j t j = j t

0

j and `

1

t = t

0

.

Proof: By structural induction on terms using the elementary facts about the proof

system given in Proposition 2.2 2

Theorem 3.5 (Completeness) t �

b

E

u implies `

1

b � t = u

Proof: By induction on the joint size of t and u. We may assume that both are normal

forms, t � �

i2I

c

i

! �

i

:t

i

and u � �

j2J

d

j

! �

j

:u

j

. Call a pre�x of type 
 2 f �; c!; c? j

c 2 Chan g if it has the form �; c!e; c?x, respectively. Let I




= f i 2 I j �

i

has type 
 g,

J




= f j 2 J j �

j

has type 
 g. Let also t




= �

i2I




c

i

! �

i

:t

i

, u




= �

j2J




d

j

! �

j

:u

j

. We

show b � t




= u




for each type 
. Clearly t




�

b

E

u




. We examine the cases 
 = � and


 = c? here and leave the case 
 = c! to the reader.

(Case 
 = � ). By symmetry we need only to show

b � u

�

+ c

i

! �:t

i

= u

�

:

for each i 2 I

�

. Note that b ^ :c

i

� c

i

! �:t

i

= nil so by CUT it is su�cient to show

b ^ c

i

� u

�

+ c

i

! �:t

i

= u

�

:

12



Now t

�

c

i

;�

�!

E

t

i

. So there exists a b ^ c

i

-partition B such that for each b

0

2 B there

is u

�

d

j

;�

�!

E

u

j

such that b



Now let S = fS

b

j b 2 Exp g be a family of relations over terms, indexed by boolean

expressions b. Then EWB(S) is the family of symmetric relations de�ned by:

(t; u) 2 EWB(S)

b

if whenever t

b

1

;�

�!

E

t

0

with bv(�) \ fv(b; t; u) = ;, then

there is a b^ b

1

-partition B such that for each b

0

2 B there exists a u

b

2

;

^

�

0

=)

E

u

0

such that b

0

j= b

2

and

1. if � � c!e then �

0

� c!e

0

, b

0

j= e = e

0

and (t

0

; u

0

) 2 S

b

0

2. otherwise � � �

0

and (t

0

; u

0

) 2 S

b

0

De�nition 4.2 (Weak Symbolic Bisimulations)

S is a weak symbolic bisimulation if S � EWB(S) 2

Let �

E

= f�

b

E

g be the largest (early) weak symbolic bisimulation.

The two versions of weak bisimulation can be related as in the case of strong bisim-

ulation.

Theorem 4.3 t �

b

E

u if and only if t� �

e

u� for every � which satis�es b.

Proof: Similar to that of Theorem 3.2. 2

The aim of this section is to extend the proof system of Section 2 to weak bisimulation

equivalence. However it is well-known that �

e

is not preserved by + and so we have to

work with the modi�ed relation:

De�nition 4.4 Two closed terms t; u are early observation equivalent, written t '

e

u,

if for all a 2 f�; c?v; c!vg

� Whenever t

a

�!

e

t

0

then u

01992 -4.3l 1.68qsaw1.43984 -4.31992 Td
(01992 -4.3l 1.68qsaw1.43984 -4.31992 Td
(01992 -4.3l15[(Ho)1000.01(1;
/R198 0.o3Be)2000.02(arly)]TJ
28.560ome uJ
28.8 0 Td
(all)Tj
/R141 0.24 Tf
16.0801 0 Td
(a)Tj
7680000.32(dig.24 Tf
8.4 -1.68008 Td
96 0.24 Tf
4.55977 -4.31992 Td
(b)f
8)0Td
14 Tf
7.91992 -1.r
(019(Tl Td
(a)Tj
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T1 �:�:X = �:X

T2 X + �:X = �:X

T3 c!e:(X + �:Y ) + c!e:Y = c!e:(X + �:Y )

Figure 5: The Axioms A

2

Lemma 4.6 If fv(b)\ bv(�) = ; then `

2

�:(X + b! �:Y ) = �:(X + b! �:Y ) + b!

�:Y

Proof: Since X = X + b ! X we need only to show b ! �:(X + b ! �:Y ) = b !

�:(X + b! �:Y ) + b! �:Y which can be derived as follows (using Proposition 2.2):

b! �:(X + b! �:Y ) ()

= b! �:(b! (X + b! �:Y )) (2.2.7)

= b! �:(b! (X + �:Y )) (2.2.5,1)

= b! �:(X + �:Y ) (2.2.7)

= b! (�:(X + �:Y ) + �:Y ) (T3)

= b! �:(X + �:Y ) + b! �:Y (2.2.5)

= b! �:(X + b! �:Y ) + b! �:Y (previous steps reversed)

2

The main result of this section is

Theorem 4.7 `

2

b � t = u if and only if t� '

e

u� for every � such that � j= b.

The soundness is straightforward, by induction on the length of the proof of b � t = u

and we prove the completeness by relying on the symbolic version of weak bisimulation.

Again we have to modify it so that it is preserved by +:

De�nition 4.8 Two terms t; u are symbolic observation equivalent with respect to b,

written t '

b

E

u, if whenever t

b

1

;�

�!

E

t

0

with bv(�) \ fv(b; t; u) = ;, then there is a b ^ b

1

-

partition B with the following property: for each b

0

2 B there exists a u

b

2

;�

0

=)

E

u

0

such

that b

0

j= b

2

and

1. if � � c!e then �

0

� c!e

0

, b

0

j= e = e

0

and t

0

�

b

0

E

u

0

2. otherwise � � �

0

and t

0

�

b

0

E

u

0

and symmetrically for u. 2

Proposition 4.9 The relation '

true

E

is preserved by all the operators in the language.

Theorem 4.10 t '

b

E

u if and only if t� if andis



1. knilk = 0

2. k�:tk = ktk

3. k�:tk = 1 + ktk if � 6� �

4. kt+ uk = maxfktk; kukg

5. kb! tk = ktk

The crucial lemma is the following:

Lemma 4.11 (Absorption) If t

b;�

=)

E

t

0

with fv(b)\bv(�) = ;, then `

2

t = t+b! �:t

0

.

Proof: By induction on why t

b;�

=)

E

t

0

.

1. t

b;�

�!

E

t

0

.

� �

0

:t

1

true;�

�!

E

t

0

with �

0

:t

1

�

�

�:t

0

. Use S3.

� b

0

! t

1

b

0

^b

00

;�

�!

E

t

0

because t

1

b

00

;�

�!

E

t

0

. By induction t

1

= t

1

+ b

00

! �:t

0

. So

b

0

! t

1

= b

0

! (b

00

! �:t

0

)

= b

0

! t

1

+ b

0

^ b

00

! �:t

0

� The other cases are similar.

2. t

b

0

;�

�!

E

t

1

b

00

;�

=)

E

t

0

with b � b

0

^b

00

. By induction t

1

= t

1

+b

00

! �:t

0

and t = t+b

0

!

�:t

1

. So, since bv(� bv!



Lemma 4.13 For any normal form t there is a full normal form t

0

such that fv(t) =

fv(t

0

); ktk = kt

0

k and `

2

t = t

0

.

Proof: By structural induction on t using the absorption lemma. 2

By this lemma and Lemma 3.4, every term can be transformed into a full normal form

of equal weak size.

The following proposition relates symbolic observation equivalence to weak bisimu-

lation. It will be used in the proof of the completeness theorem.

Proposition 4.14 t �

b

E

u if and only if there is a b-partition B such that for all b

0

2

B; t '

b

0

E

u or t '

b

0

E

�:u or �:t '

b

0

E

u

Proof: The \if" part is trivial. For the \only if" part, because of Lemma 3.4

we can



To prove `

2

b � t

c?

= u

c?

it is su�cient to establish

`

2

b ^ c

i

� u

c?

+ c

i

! c?x

i

:t

i

= u

c?

for each i 2 I

c?

.

Now t

c?

c

i

;c?z

�!

E

t

i

[z=x

i

], so there is a b ^ c

i

-partition B with the property that for

each b

0

2 B there is u

c?

d

j

;c?z

�!

E

u

j

[z=y

j

]

d;�̂

=)

E

u

0

s.t. b

0

j= d

j

^ d

0

and t

i

[z=x

i

] �

b

0

E

u

0

.

By Proposition 4.14 there exists a b

0

-partition B

0

, for each b

00

2 B

0

t

i

[z=x

i

] '

b

00

E

u

0

or

t

i

[z=x

i

] '

b

00

E

�:u

0

or �:t

i

[z=x

i

] '

b

00

E

u

0

. By induction, together with TAU and T1, in each

case we can derive

b

00

� �:u

0

= �:t

i

[z=x

i

]

Applying CUT on B

0

we get b

0

� �:u

0

= �:t

i

[z=x

i

].

If u

j

[z=y

j

] � u

0

, then b

0

� �:u

j

[z=y

j

] = �:t

i

[z=x

i

] and hence b

0

� �:u

j

[z=y

j

] =

�:u

j

[z=y

j



a:t

a

�!

l

t a 2 f�g [ f c!v j c 2 Chan g

c?x:t

c?x

�!

l

�x:t

t

�

�!

l

t

0

implies t+ u

�

�!

l

t

0

t

�

�!

l

t

0

; b = true implies b! t

�

�!

l

t

0

Figure 6: Late Operational Semantics - closed terms

De�nition 5.1 A symmetric relationR



It is important to note that we now require fv(B) � fv(b); hence when � � c?x

it is guaranteed x 62 fv(B). So we can not partition over the value space for an input

variable. This makes all the di�erences between early and late bisimulations!

Late weak symbolic observation equivalence is de�ned in terms of weak symbolic

bisimulation:

De�nition 5.4 Two terms t; u are late weak symbolic observation equivalence over b,

written t '

b

L

u, if whenever t

b

1

;�

�!

L

t

0

with bv(�) \ fv(b; t; u) = ;, then there is a b ^ b

1

-

partition B such that fv(B) � fv(b) and for each b

0

2 B there exists a u

b

2

;�

0

=)

L

u

0

such

that b

0

j= b

2

and

1. if � � c!e then �

0

� c!e

0

, b

0

j= e = e

0

and t

0

�

b

0

L

u

0

2. if � � � then �

0

� � and t

0

�

b

0

L

u

0

3. if � � c?x then �

0

� c?x and there is a b

0

-partition B

0

s.t for each b

00

2 B

0

there is

u

0

b

0

2

=)

L

u

00

s.t b

00

j= b

0

2

and t

0

�

b

00

L

u

00

.

and symmetrically for u. 2

The late versions of Theorems 4.3 and 4.10 can be proved similarly as their early

counterparts:

Theorem 5.5 t '

b

L

u if and only if t� '

l

u� for every � j= b.

The inference system for late symbolic observation equivalence can be obtained by

replacing E-INPUT in Figure 2 with the following simpler rule

L-INPUT

b � t = u

b � c?x:t = c?x:u

x 62 fv(b)

As the inference system is weakened, the � -law T3 can no longer be generalised to the

case of input pre�x. So we have to replace it with

T3L �:(X + �:Y ) + �:Y = �:(X + �:Y )

Let A

2L

be the set of axioms consisting of T1, T2 and T3L. We write `

2L

b � t = u

to denote b � t = u can be derived from the new inference system using axioms in

A

1

and A

2L

.

We have the soundness theorem:

Theorem 5.6 (Soundness) `

2L

b � t = u implies t� '

l

u� for every � such that � j= b.

For the completeness theorem, we use essentially the same form of full normal form

as in the early case (keep in mind that now double input arrows only absorb those �

moves before it):

De�nition 5.7 A normal form t � �

i

b

i

! �

i

:t

i

is a late full normal form if

1. t

b;�

=)

L

t

0

implies t

b;�

�!

L

t

0

.

20



2. Each t

i

is in late full normal form.

2

The absorption lemma still holds (note that now � can not be an input action in the

second case in the proof of the lemma). Every term can be transformed to late normal

form and the appropriate version of Proposition 4.14 holds.

Theorem 5.8 (Completeness) t '

b

L

u implies `

2L

b � t = u.

Proof: Assume t; u are in late full normal form and apply induction on the joint weak

size of t and u. For the non-trivial case when the size is not 0 let t � �

i2I

c

i

! �

i

:t

i

,

u � �

j2J

d

j

! �

j

:u

j

. We need to show

b ^ c

i

� u+ c

i

! �

i

:t

i

= u

for each i 2 I. We only consider the case when �

i

� c?x here (the other two cases are

the same as in the early case). Let z be a fresh variable, i.e. z 62 fv(b; t; u).

Now t

c

i

;c?z

�!

L

t

0

i

[z=x]. So there exists a b^c

i

-partition B with fv(B) � fv(b^c

i

) s.t for

all b

0

2 B; b

0

j= c

i

and there is u

d

j

;c?z

�!

L

u

j

[z=y] s.t. b

0

j= d

j

and there exists a b

0

-partition

B

0

s.t for all b

00

2 B

0

there is u

j

[z=y]

d

0

;�̂

=)

L

u

0

s.t. b

00

j= d

0

and t

i

[z=x] �

L

u

0

.

By Proposition 4.14 and induction, together with TAU and T1, we can derive

b

00

� �:u

0

= �:t

i

[z=x]

By an argument similar to that used in Theorem 4.15, using CUT on B

0

, we obtain

b

0

� �:u

j

[z=y] = �:u

j

[z=y] + �:t

i

[z=x]:

Now, since z 62 fv(b

0

), we can apply L-INPUT to get

b

0

� c?z:�:u

j

[z=y] = c?z:(�:u

j

[z=y] + �:t

i

[z=x])

= c?z:(�:u

j

[z=y] + �:t

i

[z=x]) + c?x:t

i

[z=x]

= c?z:�:u

j

[z=y] + c?z:t

i

[z=x]

By T1 and �-CONV, b

0

� c?y:u

j

= c?y:u

j

+ c?x:t

i

. Since b

0

j= c

i

^ d

j

, we can derive

b

0

� d

j

! c?y:u

j

= d

j

! c?y:u

j

+ c

i

! c?x:t

i

. Hence b

0

� u = u+ c

i

! c?x:t

i

. Finally,

an application of CUT on B gives the required b ^ c

i

� u = u+ c

i

! c?x:t

i

. 2

6 Extensions

So far we have concentrated on the core language of Section 2. As said in the Introduc-

tion it can be easily extended by adding the j (parallel) and n (restriction) operators. The

concrete operational semantics for these operators are standard and we only give their

symbolic operational semantics (Figure 7, where symmetric rules have been omitted),

21



t

b;�

�! t

0

implies t j u

b;�

�! t

0

j u

� 2 f �; c!e j c 2 Chan; e 2 Exp g

t

b;c?x

�! t

0

implies t j u

b;c?x

�! t

0

j u

x 62 fv(u)

t

b;c?x

�! t

0

; u

b

0

;c!e

�! u

0

implies t j u

b^b

0

;�

�! t

0

[e=x] j u

0

t

b;�

�! t

0

implies tnc

b;�

�! t

0

nc

if chan(�) 6= c

Figure 7: Symbolic Operational Semantics { continued

followed by the equational laws reducing them to the core language. As the symbolic op-
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