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independent server, together with a private return 
hannel r, generated

spe
i�
ally for this purpose. A response is awaited from the servi
e, on

the reply 
hannel r, whi
h is then forwarded on the original return 
hannel

y.

Numerous typing
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respe
t to �, intera
ting with P . After an intera
tion on the 
hannel req

the pro
ess evolves to P

1

:

(new r

:

R)

s

!hv; ri j r?(z)

b

!(z) ;

for some value v and 
hannel

b

sent by the observer. At this stage both

the observer and the observed pro
ess P

1


an still be typed relative to �,

as both v and

b

must have been known to the observer, and therefore be

typeable in �. However now the observed pro
ess generates a new 
hannel

r

, with type R = frhinti;whintig. But be
ause of the type asso
iated

with

s

in �,

r

is only sent to the observer with the subtype 
onsisting of

the one 
apability whinti. Subsequently the observer 984 0 Td66 Td
(in97 Td
[(resp)-2C)℄TJ
57.3ork4797 0 Td
(of)Tj
18 0(with)Tj
33.1199 0285hw
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whi
h indi
ates that in addition P uses 
hannels with se
urity level at

most �. Similarly we have a typing relation

� `

�

P

indi
ating that P uses 
hannels with at least se
urity level �. Indeed we


an go further, designing relations su
h as � `

r�

P or � `

w�

P where the

read 
apabilities or the write 
apabilities of pro
esses are independently


onstrained. For all of these typing relations Subje
t Redu
tion is easily

established.

Se
tion 3 is the heart of the paper. First the behavioural preorders and

equivalen
es are de�ned, by adapting the standard framework, [14, 9℄, to

the se
urity �-
al
ulus. We obtain the relations

� .

�

P '

may

Q

and

� .

�

P '

must

Q

indi
ating that P and Q 
an not be distinguished, relative to may/must

experiments respe
tively, by any testing pro
ess T su
h that � `

�

T , that

is any test running at se
urity level at most �, relative to the type envi-

ronment. This is followed by an exposition of the Context LTS, a
tions in


ontext, and their properties. Sub-se
tion 3.3 then 
ontains an alternative


hara
terisation of '

may

in terms of sequen
es of a
tions in 
ontext, while

in Subse
tion 3.4 we give the mu
h more 
ompli
ated 
hara
terisation of

'

must

.

One bene�t of having behavioural equivalen
es relativised to se
urity

levels is that non-interferen
e results 
an be stated su

in
tly. Se
tion 4


ontains two su
h statements, and their proofs. The �rst gives 
onditions

ensure that

� .

�

P '

may

Q implies � .

�

P jH '

may

Q jK:

It turns out to be suÆ
ient to require that the read 
apabilities of P and Q

be bounded above by �, that is � `

r�

P;Q, and that the write 
apabilities

of H and K be bounded below by some Æ 6� �, that is � `

wÆ

H; K.

This is quite a general non-interferen
e result. For example in the 
ase

where Q is P and K is the empty pro
ess 0 we obtain

� .

�

P '

may

P jH

indi
ating that, under the 
onditions of the theorem, the pro
ess H 
an

not interfere with the behaviour of P .

This result is not true for the must equivalen
e. As explained in Se
-

tion 4, this is be
ause our types allow 
ontention between pro
esses run-
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be the least sets, and <

:

; 
onsistent the least relations, whi
h satisfy:

(rt-base)

B

�

2 Type

�

� � �

(rt-wr)

A 2 Type

�

w

�

hAi 2 Cap

�

(rt-wrrd)

S �

fin

Cap

�

S 2 Type

�

S 
onsistent

(rt-rd)

A 2 Type

�

r

�

hAi 2 Cap

�

� � �

(rt-tup)

A

i

2 Type

�

(8i)

(A

1

; : : : ;A

k

) 2 Type

�

(u-wr) w

�

hAi <

:

w

�

hBi if B <

:

A

(u-rd) r

�

hAi <

:

r

�

hBi if A <

:

B

(u-base) B

�

<

:

B

�

if � � �

(u-res) f
ap

i

g

i2I

<

:

f
ap

0

j

g

j2J

if (8j)(9i) 
ap

i

<

:


ap

0

j

(u-tup) (A

1

; : : : ;A

k

) <

:

(B

1

; : : : ;B

k

) if (8i) A

i

<

:

B

i

The set of 
apabilities Cap is 
onsistent if

� w

�

hAi; w

�

hBi 2 Cap implies � = � and A is B

� r

�

hAi; r

�

hBi 2 Cap implies A is B

� w

�

hAi; r

�

hBi 2 Cap implies A <

:

B.

These types 
orrespond very 
losely to the I-types of [10℄; the rule

(rt-rd) ensures that only write-ups are allowed, from low-level pro
esses

to high-level pro
esses. But we allow multiple read 
apabilities, whi
h will

enable us to be more 
exible with respe
t to allowing/disallowing reading

from a 
hannel at di�erent se
urity levels. However subtyping is more

restri
tive; unlike [10℄ they 
an only be sub-typed at the same se
urity

level; r

�

hAi <

:

r

�

hBi only if � = �. Nevertheless this is 
ompensated for

in the existen
e of multiple read 
apabilities.

Example 2.2.

� The set fw

bot

hinti; r

bot

hinti; r

top

hintig is a bot-level 
hannel type, an

element of Type

bot

; that is 
hannels of this type may be transmitted

on bot-level 
hannels. In turn these 
hannels may be written to by a

bot-level pro
ess or read by either a bot-level or a top-level pro
ess.

� The type fw

bot

hinti; r

top

hintig restri
ts reading from the 
hannel to

top-level pro
esses, although bot-level ones 
an write to it.
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Figure 3 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A ` P

� ` u

:

r

�

hAi

� ` u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� ` u!hvi

(t-eq)

� ` u

:

A; v

:

B

� ` Q

� u fu

:

B; v

:

Ag ` P

� ` if u = v then P else Q

(t-new)

�; a

:

A ` P

� ` (new a

:

A) P

(t-str)

� ` P; Q

� ` P jQ; �P; 0

� <

:

� if for all u in the domain of �, �(u) <

:

�(u). We will normally ab-

breviate the simple environment fu

:

Ag to u

:

A and moreover use v

:

A to

denote its obvious generalisation to values; this is only well-de�ned when

the value v has the same stru
ture as the type A.

The �rst typing system is given in Figure 3, where the judgements take

the form

� ` P

Intuitively this means that the pro
ess P uses all 
hannels as input/output

devi
es in a

ordan
e with their types, as given in �. It is the standard

typing system for the �-
al
ulus, [16℄, adapted to our types; note that the

se
urity levels on the 
apabilities do not play any role.

We 
an also design a type inferen
e system whi
h not only ensures that


hannels are used a

ording to their types but also 
ontrols the se
urity

levels of the 
hannels used. One su
h system is given in Figure 4, where

the judgements now take the form

� `

�

P

This indi
ates that not only is P well-typed as before but in addition it uses


hannels with se
urity level at most �. (This 
orresponds to the typing

system used in [10℄.) The only di�eren
e is in the input/output rules,

where the se
urity level of the 
hannels used are 
he
ked. For example

� `

�

a!hvi only if in � the 
hannel a 
an be assigned a se
urity level Æ � �,

in addition to having the appropriate output 
apability in �.

We 
an also design a typing system

� `

�

P
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a?(X

:

B)R, the move is a?(X)R

a?v

��! Rfj

v

=Xjg and � `

�

P . From the

typing rules we have � ` a

:

r

Æ

hBi for some Æ � � and �; X

:

B `

�

R. From

the former we know that there exists some A <

:

B su
h that r

Æ

hAi 2 �(a);

from the latter, and Subsumption, we have �; X

:

A `

�

R. A standard

Substitution Lemma 
an now be applied for any v su
h that � u v

:

A is

well-de�ned to obtain � u v

:

A `

�

Rfj

v

=Xjg.

�

3 Behavioural Theories

In this se
tion we develop two behavioural theories of typed pro
esses,

based on the general testing theories of [14, 9℄. In the �rst se
tion we adapt

the original de�nitions from [14, 9℄ to our language. This is followed by a

subse
tion de�ning the Context LTS alluded to in the Introdu
tion. Two

further subse
tions use this LTS to determine the may and must versions

of our behavioural equivalen
e.

3.1 Testing Pro
esses

A test or observer is a pro
ess with an o

urren
e of a new reserved

resour
e name !, used to report su

ess. We let T to range over tests,

with the typing rule � `

�

!!hi for all �. When pla
ed in parallel with a

pro
ess P , a test may intera
t with P , produ
ing an output on ! if some

desired behaviour of P has been observed. We write

P may T

T j P

�

�!

�

R for some R su
h that R 
an report su

ess, i.e. R

!!hi

��!. The

stronger relation

P must T

holds when in every 
omputation

T j P

�

�! R

1

�

�! : : :

�

�! R

n

�

�! : : :

there is some R

k

; k � 0, whi
h 
an report su

ess.

We 
an obtain a testing based behavioural preorder between pro
esses

by demanding that they rea
t in a similar manner to a given 
lass of tests.

Here we 
hoose the 
lass of tests whi
h are well-typed and use 
hannels

from at most a given se
urity level �; that is we require that pro
esses

rea
t in the same manner to all tests T su
h that � `

�

T .

Definition 3.1 (Testing Preorders). We write � .

�

P

�

�

may

Q if for

every test �nite T su
h that � `

�

T , P may T implies Qmay T .
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Similarly � .

�

P

�

�

must

Q means that for every su
h T , P must T implies

Qmust T .

We use '

may

and '

must

denote the related equivalen
e relations.

So for example setting � to be bot, � .

bot

P '

may

Q means that in the

type environment �, P and Q are indistinguishable by low-level observers,

from a may testing point of view.

For te
hni
al reasons we have limited tests to be �nite, that 
ontain

no o

urren
e of the re
ursive operator �. It is well-known (see [9℄) that

this does not lead to any less distinguishing power.

3.2 The Context Labelled Transition System

It is well-known, [14, 9℄, that testing equivalen
es are 
losely related to the

ability of pro
esses to perform sequen
es of a
tions. We have explained in

the Introdu
tion that here we need to relativise these sequen
es to se
urity

levels and to a pair of typing environments, one for the observer and one

for the pro
ess being observed.

The rules for the Context LTS, are given in Figure 5. The judgements

take the form

�;� . P

�

�!

�

�

0

; �

0

. P

0

This judgement should be
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pro
ess a!hvi at any type B su
h that � ` a

:

r

Æ

hBi, where Æ � �. However

to eliminate mu
h potential nondeterminism in the LTS our rule di
tates

that for a given Æ � � the observer re
eives v at the minimum B su
h that

� ` a

:

r

Æ

hBi; this is the type A su
h that r

Æ

hAi 2 �(a).

Note that in the output a
tions we do not re
ord the types of the

bound names. These we only required in Figure 2 in order to implement


ommuni
ation between pro
esses; see the rule (l-
om). Here we do not

need to formalise, at least dire
tly, 
ommuni
ation between the pro
ess P

and its observer.

We 
an des
ribe pre
isely the form these judgements in 
an take:

Lemma 3.2. Suppose �;� . P

�

�!

�

�

0

; �

0

. P

0

.

� = � : Here �

0

= � and �

0

= �.

� = a?v: Here �

0

= � while �

0

= � u v

:

A for some type A su
h that

� ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B <

:

A

� = (~
)a!v: Here �

0

= �; ~


:

~

C for some sequen
e of types

~

C su
h that

�; ~


:

~

C ` v

:

A, while �

0

= �uv

:

A for some A su
h that r

Æ

hAi 2 �(a),

where Æ � �.

Proof. Straightforward rule indu
tion on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

However we are only interested in a subset of the possible judgements

whi
h 
an be derived from the rules in Figure 5. We say that the two type

environments � and � are 
ompatible if

� � u� exists

� domain(�) � domain(�).

The main property of this relation is given by:

Lemma 3.3. Suppose � and � are 
ompatible. Then � ` a

:

w

�

hAi and

� ` a

:

r

�

0

hA

0

i imply A <

:

A

0

and � � �

0

.

Proof. Simple 
al
ulation. �

The triple �;� . P is said to be a 
on�guration if

� � and � are 
ompatible

� � ` P .

When this is the 
ase we will refer to the judgment �;�.P

�

�!

�

�

0

; �

0

.P

0

as an a
tion in 
ontext.

Con�gurations are preserved by these a
tions:
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Lemma 3.4. If �;� . P

�

�!

�

�

0

; �

0

. P

0

is an a
tion in 
ontext then

�

0

; �

0

. P

0

is a 
on�guration.

Proof. From Lemma 3.2 we know exa
tly the form �

0

and �

0


an take,

depending on �. In ea
h 
ase it is straightforward to show that they are


ompatible. The simplest way to show that �

0

` P

0

is to use rule indu
tion

on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

In future we will limit our attention to judgements �;�.P

�

�!

�

�

0

; �

0

.P

0

,

whi
h are a
tions in 
ontext. This has important 
onsequen
es, in the 
ase

when � is an output a
tion (~


:

~

C)a!v. It means that the only new names

gained by the observer, that is names in the domain of �

0

whi
h are not

in that of �, are ~
. In other words if w is an identi�er in v whi
h does

not o

ur in ~
 the observer already knows about it. However the a
tion

may in
rease the type at whi
h the observer knows w. It is also worth

noting that the two rules (
-in) and (
-out) are apriori partial; that

is (
-in) 
an only be applied if � u v

:

A is well-de�ned while (
-out)

requires � u v

:

A to be well-de�ned. However it is easy to show that for

a
tions in 
ontext these environments are in fa
t well-de�ned whenever

the 
orresponding premises hold. Moreover in (
-in) the side-
ondition

B <

:

A may be omitted as it is always satis�ed.

We 
an also determine the 
ir
umstan
es under whi
h the un
on-

strained a
tions, from Figure 5, 
an give rise to a
tions in 
ontext.

Lemma 3.5. Suppose P

�

�! Q and let �;� . P be a 
on�guration.

� = � : Here �;� . P

�

�!

�

�;� . Q

� = a?v: Here if � ` v

:

B; a

:

w

Æ

hBi, where Æ � � then �;� . P

a?v

��!

�

�;� u v

:

A . Q for some A su
h that B <

:

A.

� = (~


:

~

C)a!v: Here if rulesv
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� Suppose P

�

�! Q is inferred using (l-open), that is

(new b

:

B) P

0 (b

:

B)(~


:

~

C)a!v

���������! Q

be
ause P

0

(~


:

~

C)a!v

�����! Q.

� ` P implies �; b

:

B ` P

0

and the existen
e of of � u � also

ensures that of �u�; b

:

B. In short the (weaker) indu
tive hypothesis

holds of �;�; b

:

B . P

0

and therefore by indu
tion we 
an obtain the

a
tion in 
ontext �;�; b

:

B.P

0

(~
)a!v

���!

�

Q. An appli
ation of (
-open)

gives the required �;� . P

(b)(~
)a!v

�����!

�

Q

�

Note that in a
tions in 
ontext �;� . P

�

�!

�

�

0

; �

0

. Q the resulting

environments, �

0

; �

0

, are not in general determined by � and �. The


hange in the environment of the observed pro
ess, the 
hange from � to

�

0

, is determined by the de
lared types of new names introdu
ed by the

pro
ess. For example 
onsider

P

1

= (new 


:

C

1

) a!



The Se
urity Pi
al
ulus and Non-interferen
e 19

s = (~
)a!v � s

0

: Here � after

�

s is only de�ned if r

Æ

hAi 2 �(a) for some

Æ � �, in whi
h 
ase it is (� u v

:

A) after

�

s

0

.

Lemma 3.6. If �;� .P

s

�!

�

�

0

; �

0

.Q, where � is a single-level environ-

ment, then � after

�

s is de�ned and �

0

= � after

�

s.

Proof. By indu
tion on the derivation of �;� . P

s

�!

�

�

0

; �

0

. Q. �

3.3 May testing

In this se
tion we give a 
hara
terisation of the relation � .

�

P

�

�

may

Q.

A
tions in 
ontext are generalised to (asyn
hronous) tra
es in 
ontext

as follows:

Definition 3.7 (Tra
es). Let �;� . P

s

=)

�

�

0

; �

0

. P

0

be the least

relation su
h that:

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

s

=)

�

�

00

; �

00

. P

00

(tr-�)

�;� . P

�

=)

�

�;� . P

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

��s

=)

�

�

00

; �

00

. P

00

(tr-asyn
)

� ` v

:

A

�;� u v

:

A u a

:

w

Æ

hAi . P j a!hvi

s

=)

�

�

00

; �

00

. P

00

�;� . P

a?v�s

===)

�

�

00

; �

00

. P

00

Æ � �

Note that there is some redundan
y here. The rule (tr-�), where � is an

input a
tion a?v, 
an a
tually be derived from (tr-asyn
) and (tr-� ).

We now show how intera
tions between a pro
ess P and a �-level

observer T , that is a 
omputation from T j P , 
an be de
omposed into a

tra
e in 
ontext from P and the 
omplementary sequen
e from T . It will

be
ome 
lear that it is suÆ
ient to only 
onsider newfree observers, that

is observers whi
h 
ontain no o

urren
e of the binders (new a) .
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Theorem 3.8 (Tra
e De
omposition). Let �;�.P be a 
on�guration

and suppose T j P

�

�!

�

R for some newfree observer T su
h that � `

�

T .

Then there exists a tra
e in 
ontext

�;� . P

s

=)

�

�

0

; �

0

. P

0

and a derivation T

s

=) T

0

, where R has the form (new ~


:

~

C) (T

0

j P

0

).

Proof. By indu
tion on the derivation of T jP

�

�!

�

R. Consider the non-

trivial 
ase when this is of the form T jP

�

�!

�

�!

�

R. There are essentially

three 
ases:

� Output from T to P . In this 
ase we have T

a!v

��! T

1

; P

a?v

��! P

1

and

T

1

j P

1

�

�!

�

R.

� `

�

T means � ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B, and so we

may apply Lemma 3.5 to obtain the a
tion in 
ontext

�;� . P

a?v

��!

�

�;� u v

:

A . P

1

for some B <

:

A. Moreover the 
ompatibility of � and �uv

:

A follows

from that of � and �.

Subje
t Redu
tion implies that �
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Theorem 3.9 (Tra
e Composition). Suppose �;�.P

s

=)

�

�

0

; �

0

.P

0

and T

s

=) T

0

for some s. Then there exists a derivation T j P

�

�!

�

R,

where R has the form (new ~


:

~

C) (T

0

j P

0

).

Proof. By indu
tion on s. �

Refering to the statement of this theorem note that Subje
t Redu
tion

ensures that �

0

` P

0

. However in general we do not have that �

0

`

�

T

0

,

even under the assumption � `

�

T .

Example 3.10. Let P; T be the pro
esses (new 


:

C) a!h
i and a?(x

:

A

2

) x!hi

respe
tively and let �;� map a to the type fr

Æ

1

hA

1

i; r

Æ

2

hA

2

i; w

bot

hCig,

where A

1

; A

2

; C are the types r

bot

hi; w

bot

hi; fA

1

;A

2

g respe
tively; here

we assume Æ

i

� �. Then

� `

�

T

� ` P

�;� . P

(
)a!


���!

�

�; 


:

A

1

; �

0

. 0

T

a?


��! 
!hi

but �; 


:

A

1

6`

�


!hi.

The problem lies, again, with the use of multi-level types.

Lemma 3.11. Let � be a single-level environment. Suppose � `

�

T and

� after

�

s is de�ned. Then T

s

=) T

0

implies � after

�

s `

�

T

0

.

Proof. By indu
tion on s. �

This Lemma may now be applied to the 
onditions of the Tra
e Composi-

tion Theorem, Theorem 3.9, to ensure when � is a single-level environment

we 
an also 
on
lude that �

0

`

�

T

0

; here �

0


an only be � after

�

s.

We may now state a suÆ
ient 
ondition to ensure two pro
esses are

related with respe
t to may testing.

Definition 3.12. For any 
on�guration C let Aseq

�

(C) = f s j C

s

=)

�

g

Then we write

� .

�

(� ` P )�

may

(�

0

` Q):

if for every appropriate �

0

, Aseq

�

(�;�

0

; � . P ) � Aseq

�

(�;�

0

; �

0

. Q)

Noti
e that in this de�nition we allow the testing environment, �, to be

in
reased via �

0

; this enables tests to generate
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Proposition 3.13. Suppose � ` P; Q, where � and � are 
ompatible.

Then � .

�

(� ` P )�

may

(�

0

` Q) implies � .

�

P

�

�

may

Q.

Proof.

Suppose � .

�

P

�

�

may

Q and P may T , where � ` T ; we must show

Qmay T .

Noti
e that the Tra
e De
omposition Theorem, Theorem 3.8, is only

valid for newfree pro
esses and T may in fa
t 
ontain o

urren
es of

(new n) , intuitively generating new names with whi
h to test the pro-


esses. However, be
ause we only employ �nite tests, it is easy to show

that

T �

st

(new ~


:

~

C) T

0

for some newfree test T

0

, where �

st

is the stru
tural 
ongruen
e generated

by the equations:

P j (new a) Q �

st

(new a) (P jQ) if a 62 fn(P )

if u = v then (new a) P else Q �

st

(new a) (if u = v then P else Q)

if a 62 fn(Q); a 6= u; v

u?(x) (new a) P �

st

(new a) (u?(x)P ) if a 6= u

P jQ �

st

Q j P

(We have omitted two obvious symmetri
 rules for Cap and input, respe
-

tively.) Moreover it is possible to show that �

st

is preserved by redu
tion,

�

�!, form whi
h it follows that for any pro
ess S, S may T if and only

S may T

0

. So it is suÆ
ient to prove Qmay T

0

.

Sin
e P may T

0

we know there exists a 
omputation T

0

j P

�

�!

�

R,

where R 
an report a su

ess. For 
onvenien
e let �

0

denote �; ~


:

~

C, an

extension of �. Be
ause �

0

; � . P is a 
on�guration Theorem 3.8 
an be

used to obtain the de
omposition into a tra
e in 
ontext

�

0

; � . P

s

=)

�

�

0

; �

0

. P

0

and a sequen
e T

0

s

=) T

00

, where R has the form (new

~

d

:

~

D) (T

00

j P

0

).

Sin
e Aseq

�

(�

0

; �.P )
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the property that P may T (�; s; �) if and only if there is some � su
h

that �;� . P

s

=). Note � will not be used in the de�nition and the tests

will only be de�ned for 
ertain 
ombinations of � and s.

For 
onvenien
e we only 
onsider tra
es in whi
h only simple identi�ers

are output, rather than ve
tors; that is the output a
tions are of the form

a!v or (
)a!
. The the t92he9j
230399 0 Tdhe

is is
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where A
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Definition 3.18 (Convergen
e). We say the 
on�guration C 
onverges,

written C +, if there is no in�nite sequen
e of derivations

C

�

�! C

1

�

�! : : :

�

�! C

k

�

�!

This relation is then parameterised to sequen
es in 
ontext, se
urity levels

and �nite multisets of input a
tions, by

": C +

I

�

if (C j I) +

s = (~
)a!v � s

0

: C +

I

�

s if C + and whenever C

(~
)a!v

===)

�

C

0

, C

0

+

I

�

s

0

.

s = a?v � s

0

: C +

I

�

s if, assuming C has the form �;� . P ,

� � a

+
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We use I

�

(C) to denote the set of input a
tions whi
h the 
on�guration

C 
an perform at level �, f a?v j C

a?v

��!

�

g. More generally we use I to

denote an arbitrarymulti-set of input a
tions,
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plying Lemma 3.11 it follows that �

m

`

�

a!hvi, whi
h by Lemma 3.5

is suÆ
ient to ensure that �

m

; �

m

. P

m

a?v

��!

�

. This 
ontradi
ts (2)

above.

Output: Here we have P

m

(
)a!hvi

����! and T

0

a?v

��!.

Again from Lemma 3.11 we know �

m

`

�

T

0

and therefore a! 2 O �

D; so Q

n

(~
)a!w

����! for some value w. Be
ause of the stru
ture of our

language, T

0

a?v

��! implies that T

0

a?w

��! is also true, and therefore we

have a 
ontradi
tion of the maximality of C

n

.

This 
ompletes the proof, under the assumptions that �;� . P +

I

�

s and the 
omputation under s
rutiny, (y), is �nite. However these

assumptions 
an be taken 
are of in the standard manner, as in the

proof of Lemma 4.4.13 of [9℄.

�

As in the 
ase of may testing the proof of the 
onverse depends on the

ability to de�ne well-typed tests whi
h determine the relation �

�

. Here

there are two possible reasons why 
on�gurations may not be related; one

asso
iated with 
onvergen
e, the other with a mismat
h of a

eptan
e

sets. We treat ea
h in turn. As in the previous sub-se
tion to avoid

notational 
omplexity we only 
onsider simple output a
tions, where only

single names are transmitted. We also use some of the derived notation

developed in that sub-se
tion.

Tests for Convergen
e. We de�ne the terms T

C

(�; s; I; �) by indu
tion

on s:

": Here T

C

(�; s; I; �) = (!!hi � !!hi) j I

a!v � s

0

: Here T

C

(�; s; I; �) is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T

C

(� u v

:

A; s

0

; I; �)

else 0

where r

Æ

hAi 2 �(a) for some Æ � �

(
)a!
 � s

0

: In this 
ase T

C

(�; s; I; �) is given by

(new n) n!hi j n?()!!hi j a?(x

:

A) if x 2 I(�;A)

then 0

else (n?()T

C

(�; 


:

A; s

0

; I; �))fj

x

=
jg

where again r

Æ

hAi 2 �(a) for some Æ � �

a?v � s

0

: Here T

C

(�; s; I; �) is only de�ned if � ` a

:

w

Æ

hAi; v

:

A for some
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Æ � �, in whi
h 
ase it is

a!hvi j T

C

(�; s

0

; �)

We leave the reader to 
he
k the following:

Lemma 3.24. Suppose �;�.Q

s

=)

�

�

0

; �

0

.Q

0

, where (Q

0

jI) 6+, for some

I su
h that (� after

�

s) allows

�

I. Then

� T

C

(�; s; I; �) is de�ned

� � `

�

T

C

(�; s; I; �)

� Q 6must T

C

(�; s; I; �).

Proof. By indu
tion on s. �

Corollary 3.25. �.

�

P

�

�

must

Q and �;�.P +

I

�

s implies �;�.Q +

I

�

s.

Proof. Suppose, on the 
ontrary, that for some s, �;� . P +

I

�

s, while

�;� .Q

s

=)

�

�

0

; �

0

.Q, for some Q

0

su
h that (Q

0

j I) 6+. By the previous

Lemma it is suÆ
ient to show P must T

C

(�; s; I; �), whi
h 
an easily be

done by indu
tion on s. �

Tests for A

eptan
e Sets. Let us �rst extend the predi
ate allows

�

to apply to output a

eptan
e sets, in addition to sets of input a
tions.

We write �allows

�

O if, for ea
h a! 2 O, r

Æ

hAi 2 �(a) for some Æ � �, and

� ` v

:

A for some value v; note that this means � `

�

a!hvi.

We now de�ne terms T (�; s; O; I; �), where O is an output a

eptan
e

set and I is a set of input a
tions, by indu
tion on s. The indu
tive 
ases

are very similar to the 
orresponding 
ases in the de�nition of the tests

for 
onvergen
e.

": Here T (�; s; O; I; �) is only de�ned if � allows

�

O; I, in whi
h 
ase it is

Y

f a!hvi j a?v 2 I g j

Y

f a?(x

:

A

a

)!!hi j a! 2 O g:

Here the type A

a

is determined by the fa
t that � allows

�

O.

a!v � s

0

: Here the test is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T (� u v

:

A; s

0

; O; I; �)

else 0

where A is determined by r

Æ

hAi 2 �(a) for some Æ � �.
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(
)a!
 � s

0

: Here it is de�ned by

(new n) n!
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4 Non-Interferen
e Results

In this se
tion we re
onsider the approa
h taken to non-interferen
e in

Se
tion 4 of [10℄. The essential idea is that if a pro
ess is well-typed at a

given level � then its behaviour at that level is independent of pro
esses

\running at higher se
urity levels"; or more generally \running at se
urity

levels independent to �". A parti
ular formulation of su
h a result was

given in Theorem 5.3 of [10℄:

Theorem 4.1. If � `

�

P;Q and � `

>

H;K, where H; K are �-free pro-


esses, then � .

�

P '

may

Q implies � .

�

P jH '

may

Q jK.

Here, be
ause of our more re�ned notions of well-typing, we 
an give o�er

a signi�
ant improvement on this Theorem, and moreover the formulation

is a
tually easier.

Let us say that the se
urity level Æ is independent of � if Æ 6� �. We


an ensure that a pro
ess H is \running at a se
urity level independent

to �" by demanding that � `

Æ

H , for some Æ independent of �. In fa
t we

will only require the weaker typing relation � `

wÆ

H . This ensures that all

the output a
tions of H are at a level independent of �, as 
an be dedu
ed

from the following property:

Lemma 4.2. Suppose � `

wÆ

H. Then �;� .H

�
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The 
onsisten
y requirement on types implies Æ

0

� �

0

, whi
h 
ontra-

di
ts Æ 6� �.

Output from P to H : Here the derivation takes the form

�;� . P jH

�

�!

�

�;� . (~


:

~

C)(P

0

jH

0

)

s

=)

�

where P

(~
)a!v

���! P

0

and H

a?v

��! H

0

. So there exists a sequen
e s

C

,

asso
iated with s, su
h that

�;� ; ~


:

~

C . P

0

jH

0 s

C

=)

�

(�)

with the property that for for any R su
h that �;� ; ~


:

~

C . R

s

C

=)

�

it

follows that �;� . (~


:

~

C)R

s

=)

�

.

Applying indu
tion to (�) we obtain

�;� ; ~


:

~

C . P

0 s

C

=)

�

Note that this is possible sin
e Subje
t Redu
tion gives

�; ~


:

~

C `

r�

P

0

; � u v

:

A `

wÆ

H

0

where A is a type su
h that �; ~


:

~

C <

:

�u v

:

A. (In fa
t A is the type

at whi
h v is sent by P .)

It follows that �;�; ~


:

~

C . P

0

j a!hvi

s

C

=)

�

and therefore

�;� . (new ~


:

~

C) (P

0

j a!hvi)

s

=)

�

:

But by Lemma 2.5 we know

P �

st

(new ~


:

~

C) (P

0

j a!hvi)

and the result follows.

�

We end the paper with a non-interferen
e result with respe
t to must

testing. Note that Theorem 4.3 is no longer true when

�

�

may

is repla
ed

bya

a
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The presen
e or absen
e of H determines whether or not there is read 
on-

tention on the 
hannel n, whi
h in turn in
uen
es the deadlo
k 
apabilities

of P with respe
t to the 
hannel a.

Here the problem is the type of the 
hannel n; it may be read at both

level bot and top. A not unreasonable restri
tion would be to require that

the read 
apability of 
hannels be 
on�ned to a parti
ular se
urity level,

using single-level types. This would not rule out inter-level 
ommuni
a-

tion, but simply 
ontrol it more tightly.

Theorem 4.5 (Non-Interferen
e 2). Let � and � be 
ompatible single-

level environments and suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite pro
esses H; K su
h that � `

wÆ

H; K for some Æ independent

of �.

Note that we must restri
t our attention to �nite H and K sin
e must

testing is sensitive to divergen
e; if H is a divergent term then we 
ould

not expe
t � .

�

P j 0 '

must

P jH to hold when P is a 
onvergent term.

This problem is avoided by restri
ting attention to �nite terms,whi
h 
an

never diverge.

The remainder of the se
tion is devoted to the proof of this �nal result

of the paper. Throughout we will assume � and � are 
ompatible single-

level environments, � `

r�

P , � `

wÆ

H for some Æ independent of �, and

moreover that H is a �nite pro
ess.

Lemma 4.6. For every s, �;� . P +uld16 T5.159 0.12 Tfmp�
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� The empty derivation.

Here A = R

�

(�;� . P ). This means that P 6

�

�! but we may have

P j H

�

�! either be
ause H

�

�! or there may be a write up from P

to H . But be
ause H is synta
ti
ally �nite and P + we know there is

some P

0

jH

0

su
h that P jH

�

�!

�

P

0

jH

0

6

�

�!. Let O be O

�

(�;�.P

0

jH

0

).

Sin
e 
(I)\A = ; we know that O 2 O

�

I

(�;�.P jH; s) and be
ause

P

0

is obtained from P by write-ups it follows that O � A.

� The derivation has the form �;� . P

(
)a!v

���!

�

�

0

; �

0

. P

0

s

=)

�

D.

By Subje
t Redu
tion we know �

0

`

r�

P

0

and therefore we may apply

indu
tion to obtain O 2 O

�

I

(�;� . P

0

jH; s) with the required proper-

ties. The result now follows sin
e O

�

I

(�;� . P

0

jH; s) � O

�

I

(�;� . P j

H; (
)a!v � s)

� The remaining 
ases are similar.

�

We also have the 
onverse.

Proposition 4.8. Suppose A 2 A

�

(�;�.P jH; s) and, as in the previous

Proposition, I is a set of inputs su
h that 
(I) \ A = ; and (� after

�

s) allows

�

I. Then there exists some O 2 O

�

I

(�;� . P; s) su
h that O �


(I) � A.

Proof. Again by indu
tion on the derivation

�;� . P jH

s

=)

�

D; where A = R

�

(D)

As an example we examine the 
ase

�;� . P jH

�

�! D

0 s

=)

�

D;

where the initial � 
onsists of a 
ommuni
ation between P and H . This

must be a write-up from P to H ; so D

0

has the form �;� . (~


:

~

C)P

0

j

H

0

, where P

(~


:

~

C)a!v

�����! P

0

and H

a?v

��! H

0

. We know P has the form

(~


:

~

C)(a!hvi j P

0

), but more importantly that r

Æ

hAi 2 �(a) for some Æ

independent from � (y). What this means is there 
an 
an be no 
om-

muni
ation between a!hvi and any Q su
h that � `

r�

Q.

Now the derivation �;� . (~


:

~

C)(P

0

jH

0

)

s

=)

�

D 
an be transformed

into �;�; ~


:

~

C . P

0

jH

0

s

C

=)

�

E , where R

�

(E) = R

�

(D). Moreover we 
an

apply indu
tion to this derivation, to obtain O 2 O

�

I

(�;�; ~


:

~

C . P

0

; s

C

)

su
h that O � 
(I) � A.

We 
an use (y) to prove O is also in O

�

I

(�;�; ~


:

~

C .a!hai jP

0

; s

C

). The

result now follows sin
e

O

�

I

(�;�; ~


:

~

C . a!hai j P

0

; s

C

) � O

�

I

(�;�; ~


:

~

C . (~


:

~

C)(a!hai j P

0

); s):
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�

Corollary 4.9. (Theorem 4.5) suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite pro
esses H; K su
h that � `

wÆ

H; K for some Æ independent

of �.

Proof. It is suÆ
ient to prove

(�;�

0

);�.P �

�

(�;�

0

);�.P jH and (�;�

0

);�.P jH �

�

(�;�

0

);�.P:

These follow from the two previous Propositions and Lemma 4.6. �

5 Con
lusions and Related Work

This paper is a dire
t 
ontinuation of the resear
h reported in [10℄. There

we fo
used on the general topi
 of se
urity types, showing that resour
e a
-


ess 
ontrol 
ould be enfor
ed using a typing system and information 
ow


ontrol 
ould be obtained by a restri
tion to the set of types employed.

The import of Subje
t Redu
tion was emphasised by developing a Type

Safety Theorem, whi
h in turn required a version of the language in whi
h

pro
esses were tagged with their se
urity levels. Here we 
on
entrated on

types for information 
ow, 
alling the resulting language the se
urity �-


al
ulus. The �rst main result 
onsists of alternative 
hara
terisations of

may and must testing for this language. These uses a novel labelled tran-

sition system, whi
h re
ords the
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properties have been shown to be expressible in terms of non-interferen
e

and it would be interesting to see whether these 
an be enfor
ed by typing


onstraints using a type system su
h as ours. This would involve extending

our
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