
Unique Fixpoint Induction for Message{Passing

Process Calculi

�

M. Hennessy & H. Lin

y

where b is a boolean expression and

This means that our language for message-passing processes is extended in a functional

manner to allow abstractions over data domains, and the application of these abstractions

to data expressions. In this extended language Unique Fixpoint Induction is only applied

to abstractions and we show that restricted in this manner it is sound. Although this

our approach is to work modulo these evaluations. We also assume, for example, that

each expression e has associated with it a set of variables fv(e) such that if � and �

0

agree

on fv(e) then �(e) = �

0

(e). If an expression e has no variables, i.e. it is closed, then �(e)

is independent of � and we use [[e]] to denote its value. For expressions of type bool we

use the suggestive notation b j= b

0

to indicate that for every evaluation if �(b) is true

then so is �(b

0

). As a

�:P

�

�!

l

P

c!e:P

c!v

�!

l

P where [[e]] = v

c?:F

c?

�!

l

F

P

a

�!

l

P

0

implies

EQUIV

`

D

true� T = T

`

D

b� T = U

`

D

b� U = T

`

D

b� T = U `

D

b� U = V

`

D

b� T = V

EQN

`

D

T� = U�

T = U is an axiom

CONGR

`

D

b� T

i

= U

i

i = 1; 2

`

D

b� T

1

+ T

2

= U

1

+ U

2

�-CONV

`

D

T = U

T �

�

U

INPUT

`

D

b� T = U

`

D

b� c?x:T = c?x:U

x 62 fv(b)

dec-I

`

D

b� T = U

`

D[E

b� T = U

dec-E

`

D[E

b� T = U

`

D

b� T = U

T; U 2 T

D

UNFOLD

`

D

�X = F

X (F 2 D

UFI

`

D

G

i

= F

i

[G=X]; 1 � i � n

`

D[E

G

1

= X

1

E = fX

i

(F

i

j 1 � i � n g

is a guarded declaration

�-I

`

D

b� Tx = Ux

`

D

b� T = U

x 62 fv(b; T; U)

�-E

b j= e = e

0

; `

D

b� T = U

`

D

Te = Ue

0

�

`

D

�(�xT)e = T [e=x]

Figure 4: The New Inference Rules

out, and their elimination, which is allowed provided the de�nitions being eliminated do

not concern abstraction identi�ers which occur in the conclusion. This is followed by

the UNFOLD rule, also discussed in the Introduction, and a version of Unique Fixpoint

Induction. Finally we have very standard rules for the introduction, application and

elimination of �-abstractions and �-reduction.

As with the rules for process manipulation in Figure 3 these rules form a basis for

a proof system for manipulating abstractions and recursive de�nitions, and on top of

which more interesting rules can be derived. Two such examples are:

� � `

D

�x(Tx) = T

� �-cong

T = U

�xT = �xU

whose derivation we leave to the reader.

It is interesting to re-examine, in the light of these inference rules, the unsound

reasoning in the Introduction which leads to the false conclusion

`

D

x � 0 � P (x) = Q(x)

where P; Q are de�ned by

P hxi(= c!x:c?y:P (y) and Qhxi(= c!jxjc?y:Q(y)

9

where D

0

contains the de�nition of A. We can now apply �-I to reduce this to

`

D

0

(�yA(y + 1))w = (�yc!(y + 1):c?z:A(y+ z + 1))w;

which by �-reduction reduces to

`

D

0

A(w + 1) = c!(w + 1):c?z:A(w+ z + 1);

which follows in a straightforward fashion by an instance of UNFOLD and �-reduction.

This is a somewhat laborious derivation of a relatively simple result but many of the

proof steps are trivial applications of �-reduction and �-introduction and elimination,

which can be handled in a semi-automatic way in any implementation of the system. The

proof is however complicated by the fact that UFI can only be applied to abstractions,

in the sense that one of the terms in the conclusion must be an abstraction identi�er.

But this restriction can be relaxed a little by using the following derivable proof rule:

If E = fX

i

(�x

i

(b

i

! T

i

) j 1 � i � n g is a guarded declaration then

UFI-O

`

D

b

i

� U

i

= T

i

[F=X]; 1 � i � n

`

D[E

b

1

� U

1

= X

1

(x

1

)

where F

i

� �x

i

(b

i

! U

i

); 1 � i � n.

Here the conclusion can involve an abstraction identi�er,X

1

applied to a list of variables,

x

1

, which makes the rule much easier to use. In particular when all b

i

are true then the

rule reduces to

UFI-O-t

`

D

U

i

= T

i

[F=X]; 1 � i � n

`

D[E

U

1

= X

1

(x

1

)

where F

i

� �x

i

U

i

; 1 � i � n.

Now revisiting the proof above,

A(y + 1) = B(y)

can be derived directly by one application of UFI-O-t from the judgement

`

D

A(y + 1) = (c!(y + 1):c?z:B(y + z))[�yA(y+ 1)=B];

i.e.

`

D

A(y + 1) = (c!(y + 1):c?z:A(y+ 1 + z);

which follows immediately from UNFOLD and �-reduction.

Proposition 3.1 The proof rule UFI-O is derivable.

Proof: In this proof we assume some familiarity with the capabilities of the basic proof

system, that based on the process manipulation rules. All of the properties we require

are summarised in Proposition 3.2, stated below.

Suppose

`

D

b

i

� U

i

= T

i

[F=X]; 1 � i � n:

11

S1 X + 0 = X

S2 X +X = X

S3 X + Y = Y +X

S4 (X + Y) + Z = X + (Y + Z)

Figure 5: The Axioms A

Using elementary reasoning, as detailed in the just mentioned Proposition, this means

we can infer

`

D

b

i

! U

i

= b

i

! T

i

[F=X]; 1 � i � n:

By �-cong we have

`

D

�x

i

(b

i

! U

i

) = �x

i

(b

i

! T

i

[F=X]); 1 � i � n:

Since `

D

�x

i

(b

i

! T

i

[F=X]) = �x

i

(b

i

! T

i

)[F=X], applying UFI we obtain

`

D[E

�x

1

(b

1

! U

1

) = X

1

:

Using �-E, Proposition 3.2 and �-cong, we can derive X

1

= �x

1

(b

1

! X

1

(x

1

)). Hence

`

D[E

�x

1

(b

1

! U

1

) = �x

1

(b

1

! X

1

(x

1

))

Applying �-E we obtain

`

D[E

b

1

! U

1

= b

1

! X

1

(x

1

);

which, again using Proposition 3.2, gives

`

D[E

b

1

� U

1

= X

1

(x

1

):

as required. 2

This new form of UFI does make the system easier to use but there is still an apparent

restriction to the application of UFI-O because conclusions must involve terms of the

form X(x). As an example of where this might cause problems consider the following

de�nitions:

Ahxi (c!(3x):A(x+ 2)

Bhxi (c!(2x):B(x+ 3):

The two terms A(2x) and B(3x) are semantically equivalent but none of our versions of

UFI can be used to directly conclude

` A(2x) = B(3x):

However the way forward is to introduce a new de�nition

Chxi (c!(6x):C(x+ 1)

12

and to use two applications of UFI-O-t to establish

` A(2x) = C(x) and ` B(3x) = C(x):

This is an instance of quite a general strategy which indicates the power of the derived

rule UFI-O.

In general the usefulness of our proof system depends on the equations which we

apply in the inference rule EQN. At the very least the equations in Figure 5 are necessary;

these characterise strong bisimulation equivalence for CCS. Let `

L

D

b�T = U mean that

`

D

b�T = U can be derived in the proof system using the equations A (the superscript

L stands for \Late"). The following are some simple yet useful facts about `

L

D

whose

proofs can be found in [HL95a]:

Proposition 3.2 1. `

L

D

b! b

0

! T = b ^ b

0

! T

2. `

L

D

T = T + b

0

! T

3. b j= b

0

implies `

L

D

b� T = b

0

! T

4. `

L

D

b ^ b

0

� T = U implies `

L

D

b� b

0

! T = b

0

! U

5. `

L

D

b! (T + U) = b! T + b! U

6. `

L

D

b! U + b

0

! U = b _ b

0

! U

7. If fv(b) \ bv(�) = ; then `

L

D

b! �:T = b! �:(b! T)

We end this section with another example where in addition the � -laws of CCS and

the Expansion Theorem, [Mil89], come into play. We take the version of the expansion

theorem from [HL95a] and list it in Figure 6. We will only need the �rst � -law in the

example to follow:

T1 �:�:T = �:T

We will also need two sound equations IF-PAR and IF-RES, to distribute the parallel

and restriction operators over if then else

This can be achieved by using IF-PAR and IF-RES, as well as Proposition 3.2, to push

the parallel and restriction operators over if then else in the left hand-side of the

equation, followed by three applications of the expansion theorem and T1.

4 Soundness and Completeness

The soundness of the system is relatively straightforward. The only di�culty is the

Unique Fixpoint Induction rule whose soundness depends on the following Proposition,

a generalisation of Proposition 14, page 104 of [Mil89].

Proposition 4.1 Suppose H is a sequence of terms of arbitrary type which only use

abstraction identi�ers from X , and all occurrences of these identi�ers are guarded. Let

F and G be sequences of data-closed terms such that F �

l

H [F=X] and G �

l

H[G=X].

Then F �

l

G.

Proof: Let

R = f (C[F=X]�; C[G=X]�) j Id(C) � X;C[F=X]; C[G=X] : processg:

First suppose R is a bisimulation. We show that it follows from this that F

j

�

l

G

j

for

each j. Let the type of X

j

be �

1

! : : : ! �

k

! process. We need to demonstrate that

for all v

i

2 Val

�

i

, F

j

v

1

: : : v

k

�

l

G

j

v

1

: : : v

k

. Let C[] be the context X

j

z

1

: : : z

k

, where z

i

are fresh variables, and let � map z

i

to v

i

. Then C[F=X]� is F

j

v

1

: : : v

k

and C[G=X]� is

G

j

v

1

: : : v

k

.

So it remains to show that R is a (late) bisimulation. For this we shall show R is a

bisimulation up to �

l

([Mil89]). By symmetry it is enough to prove

C[F=X]�

a

�!

l

U implies C[G=X]�

a

�!

l

V with U �

l

R �

l

V

For this we apply induction on why C[F=X]�

a

�!

l

U . Consider the possible cases for

C[].

� C � X

i

(e). Then C[F=X]� � F

i

e�

a

�!

l

U . Since F

i

�

l

H

i

[F=X], we have

H

i

e�[F=X]

a

�!

l

U

0

�

l

U . SinceX

i

is guarded inH

i

, by Lemma 2.1 U

0

is of the form

C

0

[F=X]� and H

i

e�[G=X]

a

�!

l

C

0

[G=X]�. But C[G=X]� � G

i

e� �

l

H

i

e�[G=X],

so C[G=X]�

a

�!

l

V �

l

C

0

[G=X]�. Hence U �

l

R �

l

V .

� C

1

j C

2

. There are three cases.

{ C[F=X]� � C

1

[F=X]� j C

2

[F=X]�

a

�!

l

U is because C

1

[F=X]�

a

�!

l

U

0

with

U � U

0

j C

2

[F=X]�. By induction C

1

[G=X]�

a

�!

l

V

0

with U

0

�

l

R �

l

V

0

.

Hence C[G=X]�

a

�!

l

V � V

0

j C

2

[G=X]�, and U � U

0

j C

2

[F=X]� �

l

R �

l

V

0

j C

2

[G=X]� � V .

{ C[F=X]�

a

�!

l

U is because C

2

[F=X]�

a

�!

l

U

0

with U � C

1

[F=X]� j U

0

. This

case is symmetric to the �rst case.

{ C[F=X]�

�

�!

l

U is because C

1

[F=X]�

c?

�!

l

F

0

, C

2

[F=X]�

c!v

�!

l

U

0

and U �

F

0

v j U

0

. By induction C

1

[G=X]�

c?

�!

l

G

0

, C

2

[G=X]�

c!v

�!

l

V

0

with F

0

v �

l

R �

l

G

0

v; U

0

�

l

R �

l

V

0

. Then C[G=X]�

�

�!

l

G

0

v j V

0

and F

0

v j U

0

�

l

R �

l

G

0

v j V

0

.

15

The other cases are similar. 2

Proposition 4.2 (Soundness of `

L

D

) `

L

D

b� T = U implies T� �

e

U� for any � j= b.

Proof: It is su�cient to show that each axiom in A is sound and each of the proof

rules preserves soundness. We concentrate on UFI.

Suppose G �

l

F [G=X]. Directly from the operational semantics we can check that

X �

l

F [X=X] and so, since the declaration is guarded, we can immediately apply the

previous Proposition to conclude G �

l

X. 2

It is unrealistic to expect that the system is complete. Even pure CCS, or our

language with a trivial one point message-domain, is Turing complete in the presence of

the parallel and restriction operators. However in [Mil84, Mil89, BK88] complete proof

systems are obtained for regular processes, where action pre�xing and choice, +, are the

only operators allowed in declarations. This leads to the following de�nition.

De�nition 4.3 A declaration

D = fX

i

(F

i

j 1 � i � n g

is called regular if the only operators allowed in F

i

are

� action pre�xing, c?x: , c!e: and �: ;

� choice, + ;

� guards, b! .

It is called restricted regular if in addition every occurrence of an abstraction identi�erX

is of the form X(v) : process, such that each v

i

is either a variable or a data constant. A

term is called restricted regular if it can be used as part of a restricted regular de�nition.

2

Theorem 4.4 Let D be a restricted regular declaration and T;U are restricted regular

terms in T

D

. If T� �

l

U� for every � such that � j= b, then `

L

D

b� T = U . 2

This completeness theorem is not true in general for arbitrary unguarded regular decla-

rations; a counter-example can be found in the conclusion. However the question is still

open for guarded regular declarations.

The remainder of the section is devoted to proving this result which follows closely

the corresponding result in [Mil84], but technically working at a symbolic level.

The �rst step in the completeness proof is to outline a series of transformations on

restricted regular processes which make them easier to handle. We may assume that

de�nitions, and therefore associated terms, are formed by applying pre�xing, choice or

boolean guard to terms of the form X(v) or 0. Moreover all use of constants can be

16

eliminated by introducing appropriate new abstraction identi�ers with fewer parameters.

For example the declaration

Ahxi (c?y:x > y ! c!y:A(0) + y > x! c!y:A(y)

can be replaced by

Ahxi (c?y:x > y ! c!y:B + y > x! c!y:A(y)

B (c?y:0 > y ! c!y:B + y > 0! c!y:A(y)

without a�ecting the provability relation between the original terms; these are called

equivalent de�nitions, which is clari�ed below. The same technique may be used to

eliminate multiple occurrences of the same data

�:T

true;�

�! T � 2 f �; c!e j c 2 Chan; e 2 Exp g

c?x:T

true;c?y

�! T [y=x] y 62 fv(c?x:T)

T

b

0

;�

�! T

0

implies b! T

b^b

0

;�

�! T

0

T

b;�

�! T

0

implies T + U

b;�

�! T

0

U + T

b;�

�! T

0

U [x=z]

b;�

�! T

0

implies X(x)

b;�

�! T

0

X (�zU is a de�nition

Figure 7: Symbolic Operational Semantics

De�nition 4.5 A restricted regular declaration fX

i

hx

i

i (T

i

j 1 � i � n g is called

uniform if all the x

i

are of the same length and type. 2

Proposition 4.6 Every restricted regular declaration can be transformed into a uniform

declaration.

Proof: By systematic application of the above transformations. 2

So for the rest of this section we can assume that we are working with respect to

a uniform declaration, using a �xed sequence of variables z

1

; : : : z

n

. For terms with

respect to these kinds of de�nitions it is straightforward to develop a version of symbolic

semantics as de�ned in [HL95a, HL95b], to which we refer

Proof: Following the lines in the proofs of Theorem 4.5 in [HL95b] and Theorem

3.6 in [HL95a]. 2

It can be seen from the above theorem that the free data variables appearing in

T �

b

L

U is interpreted universally. This fact is stated in the following proposition which

can be easily proved using the theorem.

Proposition 4.9 T �

b

L

U implies T� �

b�

L

U� for any data substitution �.

If T �

b

L

U then the de�nition of symbolic bisimulation requires a boolean partition

for each symbolic transition from T or U . As there are only �nite many such transitions

(modulo �-equivalence), it is possible to �nd a \uniform" partition which works for all

symbolic transitions from T or U . Here we show a slightly weaker result: There exists

a \uniform" partition from all transitions from T or U which have the same type, as

this is su�cient for our purpose. Symbolic actions �; � are of the same type, if either

� � � � � , or � � � � c?x for some x, or � has the form c!e and � has the form c!e

0

.

Lemma 4.10 Suppose T �

P

i2I

�

i

:T

i

; U �

P

j2J

�

j

:U

j

, where all �

i

and �

j

are of the

same type and bv(�

i

)\bv(�

j

)\ fv(b; T; U) = ;. Then T �

b

L

U i� there exists a b-partition

B with fv(B) � fv(b; T; U) such that for each b

0

2 B the following hold

� For each i 2 I there is a j 2 J s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

� For each j 2 J there is an i 2 I s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

Proof: Since T �

b

L

U , for each i 2 I there exists a b-partition B

i

with fv(B

i

) � fv(T; U)

such that for each b

i

2 B

i

, 9j �

i

=

b

i

�

j

and T

i

�

b

i

L

U

j

; for each j 2 J there exists a b-

partition B

0

j

with fv(B

0

j

) � fv(b; T; U) such that for each b

0

j

2 B

0

j

, 9i �

i

=

b

i

�

j

and T

i

�

b

i

L

U

j

.

Let D

I

denote the set of booleans f^

i2I

b

i

j b

i

2 B

i

g, D

J

the corresponding set

f^

j2J

b

0

j

j b

0

j

2 B

j

g and let B be the set f b

1

^ b

2

j b

1

2 D

I

; b

2

2 D

J

g. Then

W

B =

b; fv(B) � fv(b; T; U) and each b

0

2 B has the form (^

i

b

i

)^ (^

j

b

0

j

) with b

i

2 B

i

; b

0

j

2 B

0

j

.

For each i 2 I b

0

j= b

i

for some b

i

2 B

i

, so there is a j 2 B

0

j

s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

For each j 2 J b

0

j= b

0

j

for some b

0

j

2 B

0

j

, so there is an i 2 B

i

s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

2

Remark 4.11 The booleans in partition B in the above lemma can be made disjoint

as follows: Suppose B = f b

i

j 1 � i � n g. Set B

0

= f b

0

i

j 1 � i � n g with b

0

i

=

b

i

^

V

1�j<i

:b

j

. It is easy to check that

W

B

0

=

W

B, b

0

i

^ b

0

j

= false for any i 6= j, and B

0

enjoys the same property of B mentioned in the lemma.

De�nition 4.12 A uniform declaration D = fX

i

hx

i

i (T

i

g

i2I

is standard if each T

i

has

the form

X

k2K

i

b

ik

!

X

p2P

ik

�

ikp

:X

As an illustrative example let us apply this procedure to each of the de�nitions in

D

00

above. For convenience we ignore resulting de�nitions where the body is guarded by

the boolean false. The �rst de�nition Z

1

hy; xi remains essentially the same, giving rise

to

X

1

hy; xi (c?x:X

2

(y; x) + c!y:X

1

(y; x)

while the second, Z

2

hy; xi, gives rise to:

X

2

hy; xi (x � y ^ x � 0 ! (d!x:X

1

(x; y) + d!(x� 1):0) +

:x � 0 ! d!x:X

1

(x; y)+

:x � y ! 0

For an arbitrary T 2 T

D

with fv(T) � w, we can �rst eliminate any unguarded

identi�er occurrences in T by unfolding them, obtaining a term T

0

provably equal to T .

We then add a de�nition X

0

(�wT

0

to D, and �nally transform it to standard form.

2

We say two vectors of variables x = x

1

x

2

: : : x

n

and x

0

= x

0

1

x

0

2

: : : x

0

n

di�er at most

at a (possibly empty) set of variables V , if x

i

= x

0

i

for any 1 � i � n such that

x

i

62 V . A standard declaration D = fX

i

hx

i

i (T

i

g

i2I

, where T

i

�

P

k2K

i

b

ik

!

P

p2P

ik

�

ikp

:X

f(i;k;p)

(x

ikp

), is parameter-saturated if x

ikp

and x

f(i;k;p)

di�er at most at

bv(�

ikp

) for every i; k; p.

Proposition 4.14 Every standard declaration D = fX

i

hx

i

i (T

Let b

ikjl

= c

ik

^ d

jl

^ b

ij

. Since X

i

(

where � � [�z(b

ij

! X

i

(z))=Z

ij

ji; j]. If this can be done then by UFI-O we obtain the

required

`

L

D

1

[E

b

11

�X

1

(z) = Z

11

(z):

By Proposition 3.2, (1) is equivalent to

`

L

D

1

b

ij

� b

ij

! X

i

(z) =

X

k;l

c

ik

^ d

jl

^ b

ij

! (V

�

+

X

c

V

c!

+

X

c

V

c?

)�: (2)

Since

W

k;l

(c

ik

^ d

jl

) = (

W

k

c

ik

) ^ (

W

l

d

jl

) = true,

`

L

D

1

b

ij

� b

ij

! X

i

(z) =

X

k;l

c

ik

^ d

jl

^ b

ij

! T

ik

:

So (2), hence (1), will hold if we can show

`

L

D

1

b

ij

�

X

k;l

b

ikjl

! T

ik

=

X

k;l

b

ikjl

! (V

�

+

X

c

V

c!

+

X

c

V

c?

)�:

Since both f c

ik

j k g and f d

jl

j l g are sets of disjoint booleans, this reduces to: for

each k; l

`

L

D

1

b

ikjl

� T

ik

= (V

�

+

X

c

V

c!

+

X

c

V

c?

)�

which further reduces to

`

L

D

1

b

ikjl

� T

�

= V

�

� (3)

`

L

D

1

b

ikjl

� T

c!

= V

c!

� (4)

`

L

D

1

b

ikjl

� T

c?

= V

c?

� (5)

for each c 2 Chan(T

ik

).

We �rst consider (5).

Now

V

c?

� �

X

b

0

2B

c?

b

0

! V

c?

b

0

�: (6)

By the construction of V

c?

b

0

, for each (p; q) 2 I

c?

b

0

it holds that

X

f(i;k;p)

(z

ikpjlq

) �

b

0

L

Y

g(j;l;q)

(z

ikpjlq

):

By Proposition 4.9

X

f(i;k;p)

(z) �

b

0

[z=z

ikpjlq

]

L

Y

g(j;l;q)

(z):

By the de�nition of b

ij

b

0

[z=z

ikpjlq

] j= b

f(i;k;p)g(j;l;q)

:

Hence

b

0

j= b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]: (7)

23

Therefore

`

L

D

1

b

0

� V

c?

b

0

�

= (

X

(p;q)2I

c?

b

0

c?z:Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

))�

=

X

(p;q)2I

c?

b

0

c?z:(b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]! X

f(i;k;p)

(z

ikpjlq

))

=

X

(p;q)2I

c?

b

0

b

0

! c?z:(b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]! X

f(i;k;p)

(z

ikpjlq

))

=

X

(p;q)2I

c?

b

0

b

0

! c?z:(b

0

! b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]! X

f(i;k;p)

(z

ikpjlq

))

(7)

=

X

(p;q)2I

c?

b

0

b

0

! c?z:(b

0

! X

f(i;k;p)

(z

ikpjlq

))

=

X

(p;q)2I

c?

b

0

b

0

! c?z:X

f(i;k;p)

(z

ikpjlq

)

=

X

(p;q)2I

c?

b

0

c?z:X

f(i;k;p)

(z

ikpjlq

):

Since I

c?

b

0

is total T

c?

can be obtained by duplicating and reordering the summands of

the last line above, using S2; S3; S4. This means

`

L

D

1

b

0

� V

c?

b

0

� = T

c?

: (8)

Therefore

`

L

D

1

V

c?

�

(6)

=

X

b

0

2B

c?

b

0

! V

c?

b

0

�

(8)

=

X

b

0

2B

c?

b

0

! T

c?

3:2

= b

ikjl

! T

c?

;

Using Proposition 3.2 again we then obtain

`

L

D

1

b

ikjl

� V

c?

� = T

c?

;

which is the required (5) above. The proofs for (3) and (4) are similar.

This completes the proof of (1). In a symmetric way we can prove `

L

D

2

[E

b�Y

1

(z) =

Z

11

(z). 2

Theorem 4.16 (Completeness of `

L

) Let T; U 2 T

D

, D a guarded declaration. Then

T �

b

L

U e2339(Td
(S)Tj
/R132 0.24 Tf
7.91992 0 Td
(3)Tj
/R1932 0.2�)Tj
/8 2490.96 0.24 T0.24 Tf
22.8 -1.68008 Td
())Tj
-171.36 29.5199 Td
(=)Tj
/R555 0.24 Tf
29.0398 -1 Tf
-421.6zTher1f0=1
/H 1
/DThe15.3602 0 Td
(T)Tj
/R318 0.24 Te8 Td
(D)Tj
/R178 0.24 Tf
7.68008 - 10 0 Td4o0X016 0 Td
(E)T(clar)20red 0 Td
(Tj
8 249G18 0.24 TfH
(0)Tj
d)Tj
48.d
(0)Tj
/R261 0.24 Tf
6 5.03984 Td
(!)Td
(T)Tj
/R398 0-8R261 41
/132 0.24 Tf
-220.56 33�

z) =Z

Hence `

L

Theorem 5.3 (Soundness and completeness of �

E

) T �

b

E

U i� T�

We argue as follows: we know

T

c?

�

X

f�

ikp

�c?zjp2P

ik

g

�

ikp

:X

f(i;k;p)

(z

ikpjlq

)

and we have (7) by the same argument as in the proof of Proposition 4.15. Hence

`

E

D

1

V

c?

1

�

= (

X

�

ikp

�c?z

�

ikp

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

))�

=

X

�

ikp

�c?z

�

ikp

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! (b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z

f(i;k;p)g(j;l;q)

]! X

f(i;k;p)

(z

ikpjlq

))

(7)

=

X

�

ikp

�c?z

�

ikp

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! X

f(i;k;p)

(z

ikpjlq

)

=

X

�

ikp

�c?z

�

ikp

:(b

ikjl

! X

f(i;k;p)

(z

ikpjlq

))

The last step of the above derivation uses the fact that I

c?

b

0

is total.

Similarly we can derive

`

E

D

1

V

c?

2

� =

X

�

jlq

�c?z

�

jlq

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! X

f(i;k;p)

(z

ikpjlq

)

Now for each q such that �

jlq

� c?z, we know that

W

B

c?

= b

ikjl

. Also by Remark 4.11

we may assume the booleans in B

c?

are mutual disjoint. And, �nally, we know I

c?

b

0

is

surjective. So we can apply Proposition 5.4 to obtain

`

E

D

1

b

ikjl

�

X

�

ikp

�c?z

�

ikp

:X

f(i;k;p)

(z

ikpjlq

) =

X

�

ikp

�c?z

�

ikp

:X

f(i;k;p)

(z

ikpjlq

) + �

jlq

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! X

f(i;k;p)

(z

ikpjlq

)

Repeating this process for each q we obtain

`

E

D

1

b

ikjl

� V

c?

1

� = V

c?

1

� + V

c?

2

�

Because z 62 fv(b

ikjl

), from this (5) follows immediately:

`

E

D

1

b

ikjl

� V

c?

� =

X

�

ikp

�c?z

�

ikp

:(b

ikjl

! X

f(i;k;p)

(z

ikpjlq

))

=

X

�

ikp

�c?z

�

ikp

:X

f(i;k;p)

(z

ikpjlq

)

= T

c?

This completes the proof for the early version of Proposition 4.15, thus giving the

completeness result for the early case:

27

Theorem 5.5

[x

0

=

