
Adding recursion to Dpi

Samuel Hym and Matthew Hennessy

Abstract. Dpi is a distributed version of the pi-calculus, in which processes are
explicitly located, and a migration construct may be used for moving between locations.
We argue that adding a recursion operator to the language increases significantly its

Adding recursion to Dpi 3

Figure 1 Syntax of recDpi

M,N ::= Systems
lJP K Located Process
M

4 Samuel Hym and Matthew Hennessy

current site, migrates there and launches a recursive call at this new site.
¥

We refrain from burdening the reader with a formal reduction seman-
tics for recDpi, as it is a minor extension of that of Dpi. However in
Section 5 we give a typed labelled transition system for the language, the
τ -moves of which provides our reduction semantics, see Figure 14. For the
current discussion we can focus on the following rules:

(lts-here)

kJhere [x

Adding recursion to Dpi 5

Figure 2 Recursive pre-types

Base Types: B ::= int | bool | unit . . .
Local Channel Types: A ::= r〈U〉 | w〈T〉 | rw〈U,T〉
Capability Types: C ::= u : A
Location Types: K ::= loc[C1, . . . ,Cn], n ≥ 0 | µY.K | Y
Value Types: V ::= B | A | (Ã)@K
Transmission Types: T,U ::= (V1, . . . ,Vn), n ≥ 0

If k’s neighbour is l, this further reduces to (up to some reorganisation)

(new ans) kJans ?(news) . . .K | lJQK
| (new ans′) lJneigh ?(y : R) (goto y.req !〈data, ans′@l〉Quest
| ans′ ?(news) . . .)K

with Q some code running at l to answer the request brought by Quest.
The here construct can also be used to write a process initialising a

doubly linked list starting from a simply linked one. We assume for this
that the cells are locations containing two specific channels: n to get the
name of the next cell in the list, p

6 Samuel Hym and Matthew Hennessy

indicating that the local channels ui may be used at the corresponding
type Ai.

However with recursive processes it turns out that we need to consider
infinite location types. To see this consider again the searching process
Search from Example 2.1. Any site, such as k, which can support this
process needs to have a local channel called neigh from which values can
be read. These values must be locations, and let us consider their type,
that is the object type of neigh. These locations must have a local channel
called test, of an appropriate type, and a local channel called neigh; the
object type of this local channel must be in turn the same as the type
we are trying to describe. Using a recursion operator µ, this type can be
described as

µY.loc[test : r〈Tt〉, neigh : r〈Y〉]
which will be used as the type S in the definition of Search; it describes
precisely the requirements on any site wishing to host this process.

The set of recursive pre-types is given in Figure 2, and is obtained by
adding the operator µY.K as a constructor to the type formation rules for
Dpi. Following [SW01] we can associate with each recursive pre-type T
a co-inductive pre-type denoted Tree(T), which takes the form of a finite-
branching, but possibly infinite, tree whose nodes are labelled by the type
constructors. For example Tree(S) is the infinite tree

Definition 3.1 (Contractive and Tree pre-type). We call a recursive
pre-type S contractive if for every µY.S′ it contains, Y can only appear
in S′ under an occurrence of loc. In the paper we will only consider
contractive pre-types.

For every contractive S we can define Tree(S), the unique tree satisfying
the following equations:

• unwinding recursive pre-types Tree(µY.S′) = Tree(S′{|µY.S′/Y|})

Adding recursion to Dpi 7

Figure 3 Dpi subtyping rules

(sub-base)

base <: base

(sub-cap)

A <: B

u : A <: u : B

(sub-tuple)

Ci <: C′i
(eC) <: (eC′)

Adding recursion to Dpi 9

3.2 Theory of tree types

Now that we have defined a notion of tree types out of recursive pre-
types, we want to prove some properties of subtyping over these types.
For this, the co-inductive definition of subtyping gives rise to a natural
co-inductive proof method, the dual of the usual inductive proof method
used for sub-typing in Dpi.

This proof method works as follows. To show that some element, say
a, is in the greatest fixpoint of any function f it is sufficient to give a set
S such that

• a is in S;

• S is a postfixpoint of f , that is S ⊆ f(S).

From this it follows that S is a subset of the greatest fixpoint of f , which
therefore contains the element a.

We will apply this technique to the function Sub, and this case showing
that a given S is a postfixpoint is facilitated by the fact that it is invertible,
in the meaning of [GLP03, Pie02]. The inverse is the partial function
defined as follows. Since there is always at most one conclusion in a rule,
we can consider this partial function only on pairs:

supportSub((T1,T2)) =
∅ if T1 = T2 = base

{(A,B)} if T1 = u : A and T2 = u : B

{(Ci,C
′
i)} if T1 = (eC) and T2 = (eC′), with same arity

{(T′2,T
′
1)} if T1 = w〈T′1〉 and T2 = w〈T′2〉

{(U′1,U
′
2)} if T1 = r〈U′1〉 and T2 = r〈U′2〉

{(T′1,U
′
1), (U′1,U∞,↽

10 Samuel Hym and Matthew Hennessy

supportSub(R) being undefined as soon as supportSub is undefined for some
tuple in R. Note that this definition implies that supportSub, as a function
from relations to relations, is monotonic on its definition domain.

Intuitively, supportSub computes the set of hypotheses needed to reach
a given conclusion by Sub. In this sense it can be considered to be an
inverse of Sub. Formally the relationship between these two functions is
given in the following lemma.

Lemma 3.3. (1) for a pair t if there exists R such that t ∈ Sub(R) then
supportSub(t) is defined;

(2) supportSub(Sub(R)) ⊆ R for any relation R.

Proof. First we prove (1). Suppose (T1,T2) is in Sub(R) for some R.
It must be by one of the cases in the definition of Sub, and each case

12 Samuel Hym and Matthew Hennessy

Lemma 3.6 (Transitivity). Let us suppose that for some tree types T1,
T2 and T3, T1 <: T2 and T2 <: T3. Then T1 <: T3.

Proof. Let us write Tr for the function Tr(R) = R ∪ R ◦ R. Then, what
we want to prove can be formulated as

Tr(νSub) ⊆ νSub

for which we can use the coinduction proof principle. It is sufficient to
prove that

Tr(νSub) ⊆ Sub(Tr(νSub)) (1)

i.e. that Tr(νSub) is a postfixpoint of Sub.
For this, let us consider a pair (T1,T3) in Tr(νSub). By definition of

Tr this implies that either (T1,T3) is in νSub, in which case it is easy
to establish that it is also in Sub(Tr(νSub)) because νSub ⊆ Tr(νSub)
implies that νSub = Sub(νSub) ⊆ Sub(Tr(νSub)), or else there exists
some type T2 such that (T1,T2) and (T2,T3) are in νSub. Therefore
supportSub((T1,T2)) and supportSub((T2,T3)) are defined.

Now we prove that

(T1,T3) ∈ Sub(Tr(supportSub((T1,T2)) ∪ supportSub((T2,T3)))) (2)

by case analysis on the fact that (T1,T2) is in Sub(νSub). In all there are
ten possibilities, of which we examine two typical ones.

• Ti = rw〈U′i,T′i〉 with T′2 <: T′1, T′1 <: U′1 and U′1 <: U′2. Then T3 can
be any one of the forms r〈U′3〉, w〈T′3〉, or rw〈U′3,T′3〉, with the relevant
constraints among T′3 <: T′2, T′2 <: U′2 and U′2 <: U′3. In the case
where T3 = rw〈U′3,T′3〉, this implies:

supportSub((T1,T2)) ∪ supportSub((T2,T3)) =
{(T′2,T

′
1), (T′1,U

′
1), (U′1,U

′
2), (T′3,T

′
2), (T′2,U

′
2), (U′2,U

′
3` Tr(

Adding recursion to Dpi 15

Figure 5 Dpi join rules

(join-base)

base1 t base2 = base3
base1 = base2 = base3

(join-cap)

A1 t A2 = A3

u : A1 t u : A2 = u : A3

(join-tuple)

Ci t C′i = C′′i
(eC) t (eC′) = (fC′′)
(join-chan)

U1 t U2 = U3

T1 u T2 = T3

rw〈U1,T1〉 t rw〈U2,T2〉 = rw〈U3,T3〉
T1 <: U1

T2 <: U2

(join-hom)

A1 t A2 = A3

K1 t K2 = K3

A1@K1 t A2@K2 = A3@K3

(join-loc)

Ui t U′i = U′′i
loc[(ui : Ui)i; (vj : Vj)j] t loc[(ui : U′i)i; (wk : Wk)k] = loc[(ui : U′′i)i]

• loc[u1 : A1, . . . , un : An

16 Samuel Hym and Matthew Hennessy

Figure 6 MeetJoin definition

MeetJoin(R) =
{u(base, base, base)}

∪ {u(u : A1, u : A2, u : A3) if u(A1,A2,A3) is in R}
∪ {u((eC), (eC′), (fC′′)) if u(Ci,C

′
i,C

′′
i) is in R for all i}

∪ {u(r〈U1〉, r〈U2〉, r〈U3〉) if u(U1,U2,U3) is in R}
∪ {u(w〈T1〉,w〈T2〉,w〈T3〉) if t(T1,T2,T3) is in R}
∪ {u(r〈U1〉,w〈T2〉, rw〈U1,T2〉) if T2 <: U1}
∪ {u(w〈T1〉, r〈U2〉, rw〈U2,T1〉) if T1 <: U2}
∪ {u(rw〈U1,T1〉, r〈U2〉, rw〈U3,T1〉) if u(U1,U2,U3) is in R and T1 <: U3}
∪ {u(rw〈U1,T1〉,w〈T2〉w

a\da\dT1

Adding recursion to Dpi 17

Lemma 3.8 (Symmetry on u arguments). For any types T1, T2 and
T3, T1 u T2 = T3 if and only if T2 u T1 = T3.

Proof. Since the definition of MeetJoin is completely symmetric on its first
two components, it is enough to consider the relation

R = {u(T2,T1,T3) | T1 u T2 = T3} ∪ {t(T2,T1,T3) | T1 t T2 = T3}
which is easily shown to be a postfixpoint of the operator MeetJoin.

Lemma 3.9 (Reflexivity of u and t). For any type T, we have TuT =
T and T t T = T.

Proof. We simply consider the relation

R = {u(T,T,T), t(T,T,T) | T is any type}
and prove that it is a postfixpoint of MeetJoin.

For this, let us consider a triple in R. We reason on the form of that
triple, namely on the head construct for the type it is based on, and on
the operator, u or t. All the cases are very similar, we give only a few of
them.

• u(base, base, base). Obviously this triple is also in MeetJoin(R).

• u(rw〈U,T〉, rw〈U,T〉, rw〈U,T〉). As we know that both u(U,U,U)
and t(T,T,T) are also in R, we can conclude that our triple is in
MeetJoin(R).

• t(loc[ui : Ai], loc[ui : Ai], loc[ui : Ai]) is in MeetJoin(R) because of the
triples t(AioψψTD[↼A↽]TJ/Fψ.ψTfψ.ψ↩.ψTD[↼i↽]TJ/Fψ.ψTfψ.ψ.ψTD[↼oψψTD[↼A↽]TJ/Fψ.ψTfψ.ψ↩.ψTD[↼i↽]TJ/fTD[↼u↽]TJ/F.ψTfψ..ψTD[↼i↽]TJ/Fψ.ψTfψ.ψ.ψTD[↼]↽↽↩↼is↽↩↼in↽]TJ/Fψ.ψTfthe↽]T

18 Samuel Hym and Matthew Hennessy

• Ti = fCi, with C2
j u C3

j = C1
j for all j. Then, for all j, C1

j R C2
j , which

implies that (T1,T2) is in R.

• If the triple is u(r〈U2
0〉,w〈T3

0〉, rw〈U2
0,T

3
0〉) we know that T3

0 <: U2
0 so

(T3
0,U

2
0) is in particular in R. Moreover, by lemma 3.4, we know

that U2
0 <: U2

0. These two hypotheses allow us to conclude that
(rw〈U2

0,T
3
0〉), r〈U2

0〉) is in Sub(R).

• If the triple is u(rw〈U2
0,T

2
0〉, r〈U3

0〉, rw〈U1
0,T

2
0〉) we know that U2

0uU3
0 =

U1
0 so (U1

0,U
2
0) is in R and that T2

0 <: U1
0 so (T2

0,U
1
0) is in particu-

lar in R. Moreover, by lemma 3.4, we know that T2
0 <: T2

0. These
three hypotheses allow us to conclude that (rw〈U1

0,T
2
0〉, rw〈U2

0,T
2
0〉) is

in Sub(R).

• If the triple is t(loc[ui : A2
i , vj : B2

j], loc[ui : A

Adding recursion to Dpi 19

the form rw〈U0,T0〉 with U0 <: U1
0 and T2

0 <: T0. By well-formedness
of T we also know that T0 <: U0. Which means that (T,T3) is in
Sub(νSub) ⊆ Sub(R).

• r〈U1
0〉 u rw〈U2

0,T
2
0〉 = rw〈U3

0,T
2
0〉, then T <: T2 implies that T is of

the form rw〈U0,T0〉 with U0 <: U2
0 and T2

0 <: T0. We also have that
U0 <: U1

0. Of course, we have that U1
0 uU2

0 = U3
0, so (U0,U

3
0) is in R.

As so is (T2
0,T0) and (T0,U0) by well-formedness of T, (T,T3) is in

Sub(R).

• loc[ui : A1i, vj : B1j] u loc[ui : A2i, wk : B2k] = loc[ui : A3i, vj :
B1j , wk : B2k], which implies that A1

i u A2
i = A3

i for all i. The fact T
is a common subtype of T1 and T2 implies that it must be of the form
loc[ui : AAi, vj : B4j , wk : B5k, xl : B6l] with Ai <: A1

i and Ai <: A2
i

for all i, and with B4
j <: B1

j and B5
k <: B2

k. This implies that (Ai,A
3
i),

(B4
j ,B

1
j) and (B5

k,B
2
k) are in R. So (T,T3) is in Sub(R).

For the second case, let us now suppose that the pair is of the form
(T3,T), with the corresponding types T1 and T2. We reason on T1tT2 =
T3.

• rw〈U1
0,T

1
0〉 t rw〈U2

0,T
2
0〉 = r〈U3

0〉 which implies that U1
0 t U2

0 = U3
0

and T1
0T 6 ↓2

0. If T was of the form w〈T0〉 or rw〈U0,T0〉, T1 <: T and
T2 <: T would imply T0 <: T1

0 and T0 <: T2
0, which would contradict

the fact that those two types are incompatible. So T must be of the
form r〈U0〉, with U1

0 <: U0 and U2
0 <: U0 which means that (U0,U

3
0)

is in R and (T,T3) in Sub(R).

The last case is that the pair is in νSub, which means that it is obviously
in Sub(R).

So we have proved that R is a subset of νSub, which finishes our proof.

The major property of the meet operator is given by the following
lemma. This lemma is again proved by using that approach of coinductive
proofs. To state it, let us write T1 ↓T2 to mean that there is some T such
that T <: T1 and T <: T2, that is T1 and T2 are compatible.

Theorem 3.12 (Partial meets). The set of tree types, ordered by <:,
has partial meets. That is T1 ↓ T2 implies T1 and T2 have a meet.

Proof. Let us consider two types T1 and T2 that are compatible. Their
compatibility implies that the set {T | T <: T1,T <: T2} is not empty.
So we can consider its set of maximal elements, which are elements T such
that for any element T′, T <: T′ implies T = T′. Notice that this equality

20 Samuel Hym and Matthew Hennessy

is the one we previously defined by Eq. We write M(TSa/.3-14.49TM(TSa/.3-14.49T

Adding recursion to Dpi 21

If t is of the form t(T1,T2,T3), we reason on the fact that T3 is a super-
type of T1. Let us just see the most interesting case, loc[. . .].

• T1 = loc[u1 : A1, . . . , un : An, un+1 : An+1, . . . , v1 : B1, . . .] and
T3 = loc[u1 : A′′1 , . . . , un : A′′n]. Then T2 must be of the form loc[u1 :
A′1, . . . , un : A′n, un+1 : A′n+1, . . . , w1 : B′1, . . .]. Since T3 is mini-
mal among the common supertypes of T1 and T2, we know that,
for every j, An+j 6 ↑ A′n+j : otherwise, if An+1 ↑ A′n+1, we can de-
fine the type A′′n+1 as a supertype of An+1 and A′n+1, and consider
loc[u1 : A′′1 , . . . , un : A′′n, un+1 : A′′nεA

22 Samuel Hym and Matthew Hennessy

Figure 7 Subtyping rules

(sr-ax)

Σ,T1 <: T2 ` T1 <: T2

(sr-base)

Σ ` base <: base

(sr-cap)

Σ ` A <: B

Σ ` u : A <: u : B

(sr-tuple)

Σ ` Ci <: C′i
Σ ` (eC) <: (eC′)

(sr-chan)

Σ ` T1 <: T2 <: U1 <: U2

Σ ` w〈T2〉 <: w〈T1〉
Σ ` r〈U1〉 <: r〈U2〉
Σ ` rw〈U1,T2〉 <: r〈U2〉
Σ ` rw〈U1,T2〉 <: w〈T1〉
Σ ` rw〈U1,T2〉 <: rw〈U2,T1〉

(sr-hom)

Σ ` A1 <: A2

Σ ` K1 <: K2

Σ ` A1@K1 <: A2@K2

(sr-loc)

Σ ` Ui <: U

Adding recursion to Dpi 23

Figure 8 Meet inference rules

(meet-ax)

Σ,T1 u T2 = T3 ` T1 u T2 = T3

(meet-tuple)

Σ ` Ci u C′i = C′′i
Σ ` (eC) u (eC′) = (fC′′)
(meet-base)

Σ ` base1 u base2 = base3
base1 = base2 = base3

(meet-cap)

Σ ` A1 u A2 = A3

Σ ` u : A1 u u : A2 = u : A3

(meet-chan)

Σ ` U1 u U2 = U3

Σ ` T1 t T2 = T3

Σ ` rw〈U1,T1〉 u rw〈U2,T2〉 = rw〈U3,T3〉 T3 <: U3

(meet-hom)

Σ ` A1 u A2 = A3

Σ ` K1 u K2 = K3

Σ ` A1@

24 Samuel Hym and Matthew Hennessy

Figure 9 Join inference rules

(join-ax)

Σ,T1 t T2 = T3 ` T1 t T2 = T3

(join-tuple)

Σ ` Ci t C′i = C′′i
Σ ` (eC) t (eC′) = (fC′′)
(join-base)

Σ ` base1 t base2 = base3
base1 = base2 = base3

(join-cap)

Σ ` A1 t A2 = A3

Σ ` u : A1 t u : A2 = u : A3

(join-chan-rw-rw-r)

Σ ` U1 t U2 = U3

Σ ` rw〈U1,T1〉 t rw〈U2,T2〉 = r〈U3〉
T1 <: U1 T2 <: U2

U1 ↑ U2 T1 6 ↓ T2

(join-chan-rw-rw-w)

Σ ` T1 u T2 = T3

Σ ` rw〈U1,T1〉 t rw〈U2,T2〉 = w〈T3〉
T1 <: U1 T2 <: U2

U1 6 ↑ U2 T1 ↓ T2

(join-chan-rw-rw-rw)

Σ ` U1 t U2 = U3

Σ ` T1 u T2 = T3

Σ ` rw〈U1,T1〉 t rw〈U2,T2〉 = rw〈U3,T3〉
T1 <: U1 T2 <: U2

U1 ↑ U2 T1 ↓ T2

(join-hom)

Σ ` A1 t A2 = A3

Σ ` K1 t K2 = K3

Σ ` A1@K1 t A2@K2 = A3@K3

(join-loc)

Σ ` Ui t U′i = U′′i
Σ ` loc[(ui : Ui)i; (un+i : Un+i)i; (vj : Vj)j]
tloc[(ui : U′i)i; (un+i : U′n+i)i; (wk : Wk)k] = loc[(ui : U′′i)i]

Ui ↑ U′i
Un+i 6 ↑ U′n+i

(join-rec-1)

Σ, µY.T′1 t T2 = T3 ` T′1{µY.T′1/Y} t T2 = T3

Σ ` µY.T′1 t T2 = T3

(join-rec-2)

Σ,T1 t µY.T′2 = T3 ` T1 t T′2{µY.T′2/Y} = T3

Σ ` T1 t µY.T′2 = T3

(join-rec-3)

Σ,T1 t T2 = µY.T′3 ` T1 t T2 = T′3{µY.T′3/Y}
Σ ` T1 t T2 = µY.T′3

Adding recursion to Dpi 25

seen. The rules we obtain look like the ones in [AC93] in the Dpi setting.

26 Samuel Hym and Matthew Hennessy

Conversely, let us consider some proof of ∅ ` T1 uT2 = T3. We define
the relation

R = {u(Tree(T′1),Tree(T′2),Tree(T′3)) | ∃Σ′ such that
Σ′ ` T′1 u T′2 = T′3 appears in the proof of ∅ ` T1 u T2 = T3}

∪ {t(Tree(T′1),Tree(T′2),Tree(T′3)) | ∃Σ′ such that
Σ′ ` T′1 t T′2 = T′3 appears in the proof of ∅ ` T1 u T2 = T3}

Let us prove that this relation R is a postfixpoint of MeetJoin. We
consider a triple in R and we reason on the last rule used to reach the
corresponding statement in the proof of ∅ ` T1 u T2 = T3.

• (meet-ax). Then we know that T′1 u T′2 = T′3 can have been in-
troduced in Σ′ only by a rule (meet-rec-i) higher in that branch
of the proof. Since our types are contractive, we then know that
T′i must be of the formR

Adding recursion to Dpi 27

Figure 10 Well-formed environments

(e-empty)

` env

(e-base)

Γ ` env

Γ, u : base ` env
Γ(u) ↓ base

(e-new-lchan)

Γ ` env

Γ ` w : loc
Γ(u@w) = {Ai}
Γ, u@w : A ` env

{Ai} ↓ A

(e-loc)

Γ ` env

Γ, v : loc ` env
Γ(v) ↓ loc

(e-rec)

Γ ` env

Γ, Z : loc[(ui : Ai)] ` env
Z 6∈ Γ

(e-dec-at-rec)

Γ ` env

Γ(Z) = loc[. . . , u : A, . . .]
Γ, u@Z : A ` env

Figure 11 Typing values

(v-name)

Γ, u : T,Γ′ ` env

Γ, u : T,Γ′ ` u : T′
T <: T′

(v-located)

Γ ` u : T
Γ ` w : loc

Γ `w u : T

(v-channel)

Γ, u@w : A,Γ′ ` w : loc

Γ, u@w : A,Γ′ `w u : A′
A <: A′

(v-meet)

Γ `w u : T1

Γ `w u : T2

Γ `w u : T1 u T2

(v-tuple)

Γ `w ui : Ti

Γ `w (eu) : (eT)

(v-base)

Γ ` w : loc

Γ `w u : base
u ∈ base

(v-located-channel)

Γ `v ui : Ai ; Γ′

28 Samuel Hym and Matthew Hennessy

Figure 12 Typing Systems

(t-cnew)

Γ, c@k : C ` M
Γ ` (new c@k : C)M

(t-nil)

Γ ` env

Γ ` 0

(t-par)

Γ ` M
Γ ` N
Γ ` M |N

(t-proc)

Γ `k P
Γ ` kJP K

(t-lnew)

Γ, {k : K} ` M
Γ ` (new k : K)M

ing a recursion variable) and T its type or of the form u@w : A with u
a name or a variable standing for a channel and A its type. A given u
can appear more than once in that list as long as the types at which it
is known in a given location are compatible. This is useful for the names
received during communications: if you get some name at two different
types (through communication on two different channels), you can simply
consider the environment in which that name is given those two types. Of
course, the typing rules will ensure that this situation will arise only when
the channel types are indeed compatible. Note that the formation rules for

Adding recursion to Dpi 29

Figure 13 recDpi processes typing system

(t-output)

Γ `w u : w〈T〉
Γ `w V : T
Γ `w P
Γ `w u !〈V 〉P

(t-input)

Γ `w u : r〈T〉
Γ,〈X : T〉 @w `w P
Γ `w u ?(X : T)P

(t-go)

Γ `m P
Γ `w gotom.P

(t-stop)

Γ ` env

Γ `w stop
(t-rec)

Γ `

30 Samuel Hym and Matthew Hennessy

and the here construct. The latter is straightforward:

(t-here)

Γ `w P [w/x]
Γ `w here [x]P

However in order to derive judgements about recursive processes, such as

Γ `k rec (Z : R). P (3)

we will need the entries for recursion variables. Recall that here the type
R is a location type, such as loc[u1 : A1, . . . un : An], indicating the min-
imal requirements on any location wishing to host a call to the recursive
procedure. So in some way we want to consider recursion variables in the
same manner as locations. But we must be careful as we need to know

Adding recursion to Dpi 31

typing proceeds. Z will never be a value in real terms, this being syntac-
tically prohibited.
Example 4.1. Referring back to Example 2.1 let us see how these rules
can be used to infer Γ `k Search, assuming that Γ knows about locations
home, k, etc. and their channels. So, by (t-rec), this will amount to:

Γ,〈〈Z : S〉〉 `Z test ?(x)if p(x) then goto home.report !〈x〉
else neigh ?(y) goto

32 Samuel Hym and Matthew Hennessy

The main new technical property of the type inference system is given
by:

Lemma 4.1 (Recursion Variable Substitution). Suppose that Γ `w
rec Z : R. P . Then Γ `w P{rec Z:R. P/Z}.
Proof. This is done by induction on the proof that P is well-typed. So
we generalise the property we prove into: for any location or recursion
variable v and for any environment Γ if we have Γ `v P and if for any
Γ′ and w such that Γ′ <: Γ and Γ′ ` w : Γ′(Z) we have Γ′ `w Q then
Γ `v P{Q/Z}.
• (t-recvar) so P = Z and we know Γ ` v : Γ(Z). By hypothesis that

implies that Γ `v Q = P{Q/Z}.
• (t-output) so P = u !〈V 〉P ′. This implies that Γ `v P ′, on which we

can apply the induction hypothesis. Therefore we have

Γ `v u !〈V 〉 (P ′{Q/Z})
which is exactly Γ `v P .

• (t-input) so P = u ?(X : T)P ′ and Γ,〈X : T〉 @v `v P ′. By weakening
we know that, for any w such that Γ,〈X : T〉 @v ` w : (Γ,〈X : T〉 @v)(Z),
Γ,〈X : T〉 @v `w Q.

• (t-match) which implies that P = if u = u′ then P1 else P2 and
that Γ `v u : U, u′ : U′, Γ `v P2 and, if Γ,

›
u : U′

fi
@v,〈u′ : U〉 @v ` env,

Γ,
›
u : U′

fi
@v,〈u′ : U〉 @v `v P1. Then, by our induction hypothesis, we

know that Γ `v P2{Q/Z}. And since Γ,
›
u : U′

fi
@v,〈u′ : U〉 @v <: Γ then

Γ,
›
u : U′

fi
@v,〈u′ : U〉 @v `v P1{Q/Z}.

• (t-here) so P = here [x]P ′ and Γ `v P ′[v/x]. By our induction hypoth-
esis we have Γ `v P ′[v/x]{Q/Z} and P ′{Q/Z}[v/x] = P ′{Q/Z}[v/x] since the
two substitutions do not deal with the same objects (recursion vari-
ables as terms and location variables). So applying (t-here) again
gives Γ `v (here [x]P ′){Q/Z}.

• (t-rec) so P = rec Z ′ : R′. P ′ with Γ,
››
Z ′ : R′

fifi `Z′ P ′. Since
Γ,

››
Z ′ : R′

fifi
is a subtype-environment of Γ we can apply our induction

hypothesis on it to get Γ,
››
Z ′ : R′

fifi `Z′ P ′{Q/Z} which implies that
Γ `v P{Q/Z}.
Now we must prove that what we just proved indeed applies to pro-

cesses of the form rec Z : R. P . We know that Γ `w rec Z : R. P . This
implies that Γ,〈〈Z : R〉〉 `Z P . By weakening, we obtain that, for any Γ′

Adding recursion to Dpi 33

such that Γ′ <: Γ, Γ′,〈〈Z : R〉〉 `Z P . So, for any location v such that
Γ′ ` v : (Γ′,〈〈Z : R〉〉)(Z) = R, we have Γ′ `v rec Z : R. P .

So we can use rec Z : R. P as a “Q” in the previous proof and then
conclude.

This in turn leads to:

Theorem 4.2 (Subject Reduction). Γ ` M and M τ−→M ′ implies
that Γ ` M ′.

Proof. This proof heavily relies on the preexisting proof of subject re-
duction in Dpi. We simply added two derivation rules (lts-here) and
(lts-rec) so we just have to deal with those two.

• M = kJhere [x]P K and M ′ = kJP [k/x]K. The result is direct since the
only rule to prove that Γ `k here [x]P assumes that Γ `k P [k/x].

• M = kJrec Z : R. P K and M ′ = kJP{rec Z:R. P/Z}K. By the previous
lemma Γ `k rec Z : R. P implies that Γ `k P{rec Z:R. P/Z}. That proves
that Γ ` M ′.

5 Implementing recursion using iteration

The problem of implementing recursion using iteration in Dpi, contrary
to the pi-calculus, is that any code of the form kJ∗ P K will force every
instance of P to be launched at the originating site k; this is in contrast to
kJrec (Z : R). P K where the initial instance of the body P is launched at
k but subsequent instances may be launched at arbitrary sites, provided
they are appropriately typed.

Nevertheless, at the expense of repeated migrations, we can mimic the
behaviour of a recursive process using iteration by designating a home base
to which the process must return before a new instance is launched. For
example if home is deemed to be the home base then we can implement
our example kJSearchK using

homeJ∗ IterSearchK | kJFireOneK
where

IterSearch , ping ?(l) goto l.test ?(x)

34 Samuel Hym and Matthew Hennessy

call with a few reductions. FireOne is the “translation” for the recursive
calls, which means going to the home base and firing a new instance. This
shows why the construct here is necessary: the translation for recursive
calls needs to detect its current location to indeed trigger the new in-
stance in the “proper” context. Then the replicated IterSearch starts off
by migrating to the actual location where it will run.

This approach underlies our general translation of recursive processes
into iterative processes, which we now explain.

As we want to ensure that our translation will be compositional, we will
have to dynamically generate the home bases for iterative processes where,
in the example IterSearch, the home base and the replicated process were
already set up. We will also dynamically generate the registered channel
ping used to provide to a new instance of the process the name of the
location where the recursive call took place. The last thing to do when
the recursion is unwound for the first time is to start the iterative process,
which means two things: move the code that will be replicated to its home
base and fire the first instance. As we explained with the example, the
replicated code will just have to wait for the name of a location when the
recursion is unwound, go there and behave as the recursive process.

• unrec(rec Z : R. P) = (newloc homeZ : loc[pingZ : rw〈R〉])
(unrec(Z) |

goto homeZ .
∗ pingZ ?(l : R) goto l.unrec(P))

• unrec(Z) = here [x] goto homeZ .pingZ !〈x〉
• unrec(u !〈V 〉P) = u !〈V 〉unrec(P); all the other cases are similar.

We stress the fact that this translation heavily relies on migration to
mimic the original process. We conjecture that in a Dpi setting where
locations or links can fail, like in [FH05], it would not be possible to get a
reasonable encoding of recursion into iteration.

We could also give another translation, which would be closer to the
one proposed for the pi-calculus in [SW01] by:

• closing the free names of recursive processes, and then communicating
their actual values through the channel ping, at the same time as the
location;

• creating all the home bases at the top-level of the process, once and
for all.

So the translation of a system would start by identifying the set of recur-
sion variables: let us write this set {Zi}, and their corresponding processes

Adding recursion to Dpi 35

{Pi} when “rec Zi : Ri. Pi” appear in the system. For any process Pi
among those we will note ñi its set of free names. Then the components
of the system are simply translated the following way:

• nc-unrec(Zi) = here [x] goto homeZi .pingZi !〈x, ñi〉
• nc-unrec(rec Zi : Ri. Pi) = nc-unrec(Zi)

• nc-unrec(u !〈V 〉P) = u !〈V 〉nc-unrec(P); all the other cases are
similar.

A system M is then translated, as a whole, into the following process:

(new pingZ1
) (new homeZ1) (new pingZ2

) (new homeZ2) . . .
homeZ1J∗ pingZ1

?(l : R1, ñ1) goto l.nc-unrec(P1)K |
homeZ2J∗ pingZ2

?(l : R2, ñ2) goto l.nc-unrec(P2)K | . . . |
nc-unrec(M)

But, of course, such an approach would not be compositional, as the name
nc-unrec(·) suggests.

Now that we have described our translation, we want to prove that
the translation and the original process are “equivalent”, in some sense.
Since we are in a typed setting, the first property we need to check is the
following.

Lemma 5.1. Γ ` M if and only if Γ ` unrec(M)

Proof. We define the function ϕ over environments:

ϕ(Γ,〈〈Zi : Ri〉〉 , uij@Zi : Aij) =
Γ, homeZi : loc,pingZi@homeZi : rw〈Ri〉,〈li : Ri〉 , uij@li : Aij

ϕ−1 is defined as expected.
We now prove the following generalised statement:

• Γ ` M implies ϕ(Γ) ` unrec(M);

• Γ `v P implies that ϕ(Γ) `v unrec([ψTD[↼unrψψψ↩.ψT.ψ↩.ψTD[↼v↽]TJ.hM↽]TJ/FψψψTD[↼[ψTD[↼unrψψψ↩.]TJ/Fψ.ψTfψ.ψ.s.fψ.ψ.ψTD[↼,↽]TKusψψTD[↼implies↽↩↼that↽]TJ.ψTfψ.ψ.s.fψ.ψ.ψTD[↼,↽]TKusψψTD[↼implies↽↩↼that↽]TJ.ψTfψ.ψ.s.fpvpthat↽]TJ/Fψ.ψTfψ.ψTD[↼ϕ↽]TJ/Fψ.ψTfψ.ψψTD[↼↼Γ↽↽]TJ/Fψ.ψTfψ.ψψTD[↼`↽]TJ/Fψimplies↽↩↼that↽]TJ.ψTimplnrec(

36 Samuel Hym and Matthew Hennessy

Adding recursion to Dpi 37

The reasoning would be identical for Γ `Zj rec Zi : Ri. P but w
would have to be replaced by Zj when typing in Γ and by lj when in
ϕ(Γ).

• (t-recvar): Γ `w Z implies that Γ ` w : Γ(Z). Then ϕ(Γ) ` w :
Γ(Z

38 Samuel Hym and Matthew Hennessy

Figure 14 Labelled transition semantics. Internal actions.

(lts-go)

Ω ⁄ kJgoto l.P K τ−→β Ω ⁄ lJP K
(lts-split)

Ω ⁄ kJP |QK τ−→β Ω ⁄ kJP K | kJQK
(lts-iter)

Ω ⁄ kJ∗ P K τ−→β Ω ⁄ kJ∗ P K | kJP K
(lts-here)

Ω ⁄ kJhere [x]P K τ−→β Ω ⁄ kJP [k/x]K
(lts-rec)

Ω ⁄ kJrec (Z : R). P K τ−→β Ω ⁄ kJP{rec (Z:R). P/Z}K
(lts-l-create)

Ω ⁄ kJ(newloc l : L)P K τ−→β Ω ⁄ (new l : L) kJP K
(lts-c-create)

Ω ⁄ kJ(newc c : C)P K τ−→β Ω ⁄ (new c@k : C) kJP K
(lts-eq)

Ω ⁄ kJif u = u then P else QK τ−→β Ω ⁄ kJP K
(lts-neq)

Ω ⁄ kJif u = v then P else QK τ−→β Ω ⁄ kJQK when u 6= v
(lts-comm)

ΩM ⁄M (ñ:T̃)k.a!V−−−−−−−→ Ω′M ⁄M ′

ΩN ⁄N (ñ:Ũ)k.a?V−−−−−−−→ Ω′N ⁄N ′

Ω ⁄M |N τ−→ Ω ⁄ (new en : eT)M ′ |N ′
Ω ⁄N |M τ−→ Ω ⁄ (new en : eT)N ′ |M ′

ñ ∩ fn(N) = ∅

• for every u but recursion variables in dom(Γ′) we have Γ(u) <: Γ′(u);

• for every recursion variable Z in dom(Γ′) we have Γ(Z) = Γ′(Z). ¥
Definition 5.3 (Configurations). We call configuration a tuple of an
environment Ω and a system M , written Ω ⁄M , such that there exists an
environment Γ, with Γ <: Ω and Γ ` M . ¥

The reader is referred to [HMR03] for the formal details.

Theorem 5.4. Suppose Γ ` M . Then Γ |= M ∼=rbc unrec(M).

The proof uses a characterisation of this relation as a bisimulation
equivalence in a labelled transition system in which:

• the states are configurations;

• the actions take the form Ω ⁄M µ−→ Ω′ ⁄M ′; these are based on the
labelled transitions system given in Figure 14 and 15.

Adding recursion to Dpi 39

Figure 15

40 Samuel Hym and Matthew Hennessy

6 Proof of recursion implementability

Let us hint the problems encountered in trying to prove the equation (4)
on an example. For this, let us consider a parameterised server version of
our Search process that would be exploring a binary tree instead of a list:

PSearch , search

42 Samuel Hym and Matthew Hennessy

Definition 6.2 (Residual). We call residual of an occurrence o in M
after a reduction Ω⁄M µ−→Ω′⁄M ′ the occurrence defined by the following
function:

• Res(ε,Ω ⁄M µ−→ Ω′ ⁄M ′) = ε

• Res(1o,Ω ⁄M |N µ−→ Ω′ ⁄M ′ |N) = Res(o,Ω ⁄M µ−→ Ω′ ⁄M ′)

• Res(2o,Ω ⁄M |N µ−→ Ω′ ⁄M ′ |N) = 2o

• Res(0,Ω ⁄ kJa !〈V 〉P K k.a!V−−−→ Ω′ ⁄ kJOK) = ⊥
• Res(00o,Ω ⁄ kJa !〈V 〉P K k.a!V−−−→ Ω′ ⁄ kJOK) = 0o

• Res(0o,Ω ⁄ (

Adding recursion to Dpi 43

This will therefore heavily rely on implicit α-conversions.

• if o0 is in P, then it must be in some O in P;

unrecoP(kJrec Z : R. P K) =
homeZOJpingZO ?(l : R) goto l.unreco00

P (P)K
| homeZOJpingZO !〈k〉K

• if o is in P, then it must be in some O in P, when the previous case
cannot apply;

unrecoP(rec Z : R. P) = here [x] goto homeZO .pingZO !〈x〉
• we write o′ for the occurrence of the binder of the occurrence o of Z;

if o′ is in P, then it must be in some O in P and Z must be “ZO”;

unrecoP(Z) = here [x] goto homeZO .pingZO !〈x〉
• we write o′ for the occurrence of the binder of the occurrence o of Z;

if o′ is not in P:

unrecoP(Z) = here [x] goto homeZ .pingZ !〈x〉
• unrecoP(u !〈V 〉P) = u !〈V 〉unreco0

P (P); all the other cases for pro-
cesses are similar;

• if o is the longest system-prefix of the occurrences in (Oi) ∈ P, we
translate the system this way, with ni the annotation of Oi in P and
oi one occurrence in Oi:

unrecoP((new e : E)M) =
(new e : E) (new homeZO1

: loc[pingZO1
: rw〈RO1〉])

homeZO1
J∗ pingZO1

?(l : RO1) goto l.unrecoi0
P (M |oi0)K

...× n1

| homeZO1
J∗ pingZO1

?(l : RO1) goto l.unrecoi0
P (M |oi0)K

| homeZO2
J. . .K

...
|unreco0

P (M)

All other cases for system are similar, with the “generation” of all the
home-bases that are required at that occurrence before the inductive
case.

Notice that, up-to congruence for the order between the different locations
homeZ introduced by the last case of the definition, unrecoP(kJrec Z :
R. P K) when o0 is not in P is equal to unrecoP∪{{o0}1}(kJrec Z : R. P K).

Of course, we extend the notion of residual of an occurrence to the one
of residual of a set P.

44 Samuel Hym and Matthew Hennessy

We write unrecP(M) for unrecεP(M). Note that we do not need
a special case for the translation of kJZK since we know that this is an
impossible situation.

To deal with the extra steps introduced by the translation, we will
resort to a proof technique given in [JR04], namely bisimulation up-to-β.
This is based on the remark that, among the reductions added by the
translation, only the communication on the channel ping is “dangerous”,
because it could fail if one of the two agents involved in the communication
were absent. Every other step is a so-called β-move, written τ−→β in
the LTS, in Figure 14. Thanks to bisimulations up-to-β we can focus
only on the communication moves. Then we can consider that the ping-
communication (which is a τ -move) in the translation corresponds to the
recursion unwinding in recDpi.

Lemma 6.3 (unrec() is an bisimulation). Suppose an environment Γ
and a system M . Then Γ ` M implies (Γ ⁄M)≈bis (Γ ⁄ unrec(M))

Adding recursion to Dpi 45

(lts-go). The term it reaches is

(new homeZO1
) (new homeZO2

) . . .
homeZO1

J. . .K | . . . | lJunreco00
P (P)K

which might need some extra β-reductions to become the transla-
tion of M ′|o′ = lJP K because there are different possible cases for
the form of P . If P is of the form rec Z : R. P ′:

∗ if o′0, the occurrence for the recursion operator, is in P ′ then it
must be in some set O′ in P ′ and unreco

′
P′(M

′|o′) is

(new homeZO1
) . . . homeZO′ JpingZO′ !〈l〉K

| homeZO′ JpingZO′ ?(l : R) goto l.unreco
′00
P′ (P ′)K

but, we will take P ′ to be the residual of P after the move so
that o′0 is in P ′ exactly when o00 was in a set O in P. This
implies that lJunreco00

P (P)K is of the form

lJhere [x] goto homeZO .pingZO !〈x〉K
which reduces by β-moves to homeZOJpingZO !〈x〉K. We also
know by definition of the translation unrecP(M) that at the
longest common system-prefix among occurrences in O is gen-
erated the server in the home-base:

(new homeZO) homeZOJ∗ pingZO ?(l : R) goto l.unreco00
P (P)K

so one β-move generates a new instance of the replicated process

homeZOJ∗ pingZO ?(l : R) goto l.unreco00
P (P)K

which is exactly the system we need. And we can put this new
instance by o′ by congruence.

∗ if o′0 is not in P ′, we know that the translation we will give will
be of the form

(new homeZ{o′0} : loc[pingZ{o′0} : rw〈R{o′0}〉])
homeZ{o′0}J∗ pingZ{o′0} ?(l : R) goto l.unreco

′00
P′∪{{o′0}}(P

′)K
| homeZ{o′0}JpingZ{o′0} ?(l : R) goto l.unreco

′00
P′∪{{o′0}}(P

′)K
| homeZ{o′0}JpingZ{o′0} !〈k〉K

but in that case, we will have o00 not in P so lJunreco00
P (P)K

will be of the form

lJ(newloc homeZ : loc[pingZ : rw〈R〉])
(unrec(Z) |

goto homeZ . ∗ pingZ ?(l : R) goto l.unrec(P))K

46 Samuel Hym and Matthew Hennessy

so by (lts-l-create), (lts-split), (lts-here), (lts-go) and
(lts-iter) this reduces by β-moves into the translation ofM ′|o′ .
Otherwise, if P is not of the form rec Z : R. P ′, we know that it

cannot be of the simple form Z, since Z would in that case be a free
recursion variable in the system. So it must be one of the various
possible cases for processes. If we take the example of a

Adding recursion to Dpi 47

of P for P ′, we get

unreco
′
P′(kJP{rec (Z:R). P/Z}K) = unreco

′
P′(kJP K)

As in the case for rule (lts-go), showing the adequation be-
tween this translation and kJunreco00

P (P)K turns out to be a
simple case analysis on the form of P .

– (lts-comm): M |o = M1 |M2 and there exists some Ω1 and Ω2 such
that Ω1 ⁄ M |o1

(ñ:eT)k.a!V−−−−−−−→ Ω′1 ⁄ M ′|o′′1 and Ω2 ⁄ M |o2
(ñ:eU)k.a?V−−−−−−−→

Ω′2 ⁄M ′|o′′2. By our induction hypothesis, we can conclude that,
writing P ′ for the residual of P after the communication move

Ω1 ⁄ unreco1
P (M |o1) (ñ:eT)k.a!V−−−−−−−→ τ−→∗β ≡ Ω′1 ⁄ unreco

′′1
P′ (M ′|o′′1)

and

Ω2 ⁄ unreco2
P (M |o2) (ñ:eU)k.a?V−−−−−−−→ τ−→∗β ≡ Ω′2 ⁄ unreco

′′2
P′ (M ′|o′′2)

which implies

Ω ⁄ unrecoP(M |o) τ−→ τ−→∗β
≡ Ω ⁄ (new ñ : eT) unreco

′′1
P′ (M ′|o′′1) |unreco

′′2
P′ (M ′|o′′2)

= Ω ⁄ (new ñ : eT) unreco
′′
P′(M

′|o′′)
= Ω ⁄ unreco

′
P′(M

′|o′)
these 1.5 .53lit

48 Samuel Hym and Matthew Hennessy

in M

Adding recursion to Dpi 49

(ICFP), 2000. Also appears as Chapter 21 of Types and Programming Lan-
guages by Benjamin C. Pierce (MIT Press, 2002).

[HMR03] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a be-
havioural theory of access and mobility control in distributed systems. The-
oretical Computer Science, 322:615–669, 2003.

[HR02] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173:82–120, 2002.

[JR04] Alan Jeffrey and Julian Rathke. A theory of bisimulation for a fragment of
concurrent ml with local names.

