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AsstracT.  An intuitionistic, hybrid modal logic suitable for reasoning about distribution of resources was
introduced in [16, 17]. The modalities of the logic allow to validate properties paréicular place in some

place and irall places. We give a sound and complete Kripke semantics for the logic extended with disjunctive
connectives. The extended logic can be seen as an instahtybofl IS5 We also give a sound and complete
birelational semantics, and show that it satisfies the finite model property: if a judgement is not valid in the logic,
then there is a finite birelational counter-model. Hence we prove that the logic is decidable.
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1 Introduction

In current computing paradigm distributed resources spread over and shared amongst dif-
ferent nodes of a computer system are very common. For example, printers may be shared
in local area networks, or distributed data may store documents in partEagiedi loca-
tions. The traditional reasoning methodologies are not easily scalable to these systems as
they may lack implicitly trust-able objects such as a central control.

This has resulted in the innovation of several reasoning techniques. A popular approach
in the literature has been the use of algebraic systems such as process algebra [10, 20, 15].
These algebras have rich theories in terms of semantics [20], logics [9, 8, 14, 22], and
types [15]. Another approach is logic-oriented [16, 17, 37, 21, 38, 30]: intuitionistic modal
logics are used as foundations of type systems by exploitingptbjgositions-as-types,
proofs-as-programparadigm [12]. An instance of this was introduced in [16, 17]. The
logic introduced there is the focus of our study. It uses the conjunctive connetiakd
[and implication- .

The formulae in this logic also include names, calfgdces Assertions in the logic
are associated with places, and are validated in places. In addition to considbetiger
a formula is true, we are also interestedwhere



The deduction system is essentially a conservative extension of propositional intuitionistic
logic; and it is in this sense that we will use the adjective “intuitionistic” for the extended
logic throughout the paper.

As noted in [16, 17], the logic can also be used to reason about distribution of resources
in addition to serving as the foundation of a type system. The papers [16, 17], however,
lack a model to match the usage of the logic as a tool to reason about distributed resources.
In this paper, we bridge the gap by presenting a Kripke-style semantics [19] for the logic
extended with disjunctive connectives. In Kripke-style semantics, formulae are considered
valid if they remain valid when the atoms mentioned in the formulae change their value
from false to true. This is achieved by using a partially ordered segioséible states
Informally, more atoms are true in larger states.

We extend the Kripke semantics of the intuitionistic logic [19], enriching each possible
state with a set of places. The set of places in Kripke states are not fixed, a8 rdi
possible Kripke states may hadgferentset of places. However, the set of places vary in
a conservative way: larger Kripke states contain larger set of places. In each possible state,
diCedent places satisfy @edent formulae. In the model, we interpret atomic formulae as
resources of a distributed system, and placement of atoms in a possible state corresponds
to the distribution of resources.

The enrichment of the model with places reveals the true meaning of the modalities in
the logic. The modality @ expresses a property in a named place. The modBaliddrre-
sponds to a weak form of spatial universal quantification and expresses a property common
to all places, and the modaliy corresponds to a weak form of spatial existential quan-
tification and expresses a property valid somewhere in the system. For the intuitionistic
connectives, the satisfaction of formulae at a place in a possible state follows the standard
definition [19].

To give semantics to a logical judgement, we allow models with more places than those
mentioned in the judgement. This admits the possibility that a user may be aware of only
a certain subset of names in a distributed system. This is crucial in the proof of soundness
and completeness as it allows us to create witnesses for the existenéiat(the universal
(Dnodalities. The Kripke semantics reveals that the extended logic can be seen as the
hybridisation of the well-known intuitionistic modal systdé8b[11, 23, 26, 29, 34, 35].

Following [11, 26, 34, 35], we also introduce a sound and complete birelational se-
mantics for the logic. The reason for introducing birelational semantics is that it allows
us to prove decidability. Birelational semantics typically enjoy finée model property






anddoc; are stored in a particular place, then the usual intuitionistic rules allow to infer
that the place can access the entire document.

The intuitionistic framework is extended in [17] to reason abolEdint places. An
assertion in such a logic takes the forgndt p”, meaning that formul# is valid at placep.

The constructat” is a meta-linguistic symbol and points to the place where the reasoning
is located. For exampleloc; at p anddoc; at p formalise the notion that the panisc,
anddoc; are located at the noge If, in addition, the assertiondfc; [ddc,) - doc) at p

is valid, we can conclude that the documdat is available ap.

The logic is a conservative extension of intuitionistic logic in the sense that if we restrict
our attention to formulae without modalities then the ‘local’ proof system in a single place
p mimics the standard intuitionistic one. For instance, the deduction described above is
formally

A [P doc, atp ;A [P doc, at p
:A P doc, [Cdbc, at p ;A [ (doc, [Cdbc,) — doc atp e (1)
:A [P doc at p -

whereA &' (doc; [Cdbc,) — doc at p,doc; at p,doc, at p. It is easy to see that this
derivation becomes a standard intuitionistic one if rewritten without the ‘plate.
In the assertio at p, ¢



the section (see Ex. 1).

Even if we deal with resources distributed in heterogeneous places, certain properties
are valid everywhere. For this purpose, the logic has the modaliilye formulalg_imeans
that¢ is valid everywhere. In the example abopesan access the documatic, if there
is a place that has the patbc, and can send it everywhere. This can be expressed by
the formulae(doc, [{doc, - [ddc,))at p~ The rules of the logic would allow us to
conclude thatloc; is available ap. Therefore the documedbc is also available gp. We
will illustrate this inference at the end of the section (see Ex. 2).

We now define formally the logic. As mentioned above, it is essentially the logic in-
troduced in [17] enriched with the disjunctive connectieahd [, thus achieving the full
set of intuitionistic connectives. This allows us to express properties such as: the docu-
mentdoc; is located either ap itself or atq (in which casep has to fetch it). This can be
expressed by the formulddc, [{{Hoc,@q) — doc)) at p.

For the rest of the paper, we shall assume a fixed countable set of atomic formulae
Atoms and we vary the set of places. Given a countable set of pRicé=t Frm(Pl) be the
set of formulae built from the following grammar:

¢=A[ LT Lol ¢ Lol ¢ —~ ¢ [9@p | L] ¢
Here the syntactic categofy stands for elements froal, and the syntactic categody
stands for elements froitoms The elements ifrrm(PIl) are said to bgure formulae
and are denoted by small Greek lettérg, |1.... An assertion of the fornp at p is called
sentenceWe denote by capital Greek lettdrsly, ... (possibly empty) finite sets of pure
formulae, and by capital Greek letteksA,, . . . (possibly empty) finite sets of sentences.
Each judgement in this logic is of the form

r



FAdatp Ploatp - T0iA Patp C

- rA PCaip
rAPlCaip rAPlpatp
A FPlp,atp rACFlp,atp
M AP, Chpatp rA o, Cdpatp
rArRd, Chpatp MA G atpPlpatp A ¢atp Plpatp
[E]
rACFPpatp
AP atp i=1,2 rA P, Chiatp o
A Ple, Cdpatp ;A [Plp; at p E=12)
A ¢atp Pl atp | AP - patp M AFlpatp
ARG - patp rALJatp - E
. . (]
MAPlpatp @ ;A Plo@pat p QE
r;A Plo@p at p- AP atp
rAPpatp A Pledpatp™ A ¢atq Iﬁqtpatpm‘E
;A Ple at p- M A Py at p™
AP ¢atq ;A P10kt p F,q);AI*i”IantpDEEI
r;A P10kt p ra Py atp™

Ficure 1. Natural deduction.

analogy, however, has to be taken carefully. For example,Af [P1ey at p, then we can
show using the rules of the logic thEtA [P1 e at p. In other words, if a formula is
true in some unspecified place, then every place can deduce that there is some place where
Y is true.
Also note that, as stated, the rul&has a ‘local’ flavour: from[ail p, we can infer
any other property in the same plage,However, the rule has a ‘global’ consequence. If
we havelall p, then we can infel_ @b at p. Using @E, we can then infel_aflg. Hence,
if a set of assumptions makes a place inconsistent, then it will make all places inconsistent.
As we shall see i§2.1, the Kripke semantics of this logic would be similar to the one
given for intuitionistic systeniS5[23, 29, 35]. Hence this logic can be seen as an instance
of Hybrid 1S5[7]. Before we proceed to define the Kripke semantics, we illsutrate our
derivation system by a couple of examples. First example will demonstrate the use of rule
+1, while the second example will demonstrate the usemf

Example 1 Let p, p°CB, y be the formuladoc, [{dbc, — doc,@p)) at p- LetA X" ey

Pickq [Band letA™™ " sy; &4 [P



T
L .
A FPlepatp” ™ ;APM™9doc, at p oF
;A Pldoc, at p

wherer is the derivation:

L
; APP19 doc, [{doc, — doc,) atq ; AMTP19 doc, [{doc, — doc,) atq L
— [E]
; AFP19 doc, at




The Kripke models that we shall define now are similar to those defined for the intu-
itionistic modal systeniS5[11, 34, 23, 26, 7, 35]. In the definitiok is the set of Kripke
states, and its elements are denotedlby. .. The relation= is the partial order on the set
of states.

Definition 3 (Kripke Model) A quadrupleK = (K, <, {PiJ}«x {Ik}kxi) is aKripke model
if

« Kis a(non empty) set;

e <is a partial order oiK;

« Py is anon-emptyset of places for ak [K;

e Pk [Aifk<l;

e lx : Atoms— Pow(Py) is such thaty(A) CLIA) forallk <.
LetPls= I%K]IPK. We shall say thaPlsis the set of places df.

The definition tells only how resources, i.e. atoms, are distributed in the system. To give
semantics to the whole set of formuleem(Pls), we need to extentl. The interpretation
of a formula depends on its composite parts, and if it is valid in a place in a given state,
then it remains valid at the same place in all larger states. For example, the fdrrulh
is valid in a statek at placep Ry, if both ¢ andy are true at place in all stated = k.

The introduction of places in the model allows the interpretation of the spatial modali-
ties of the logic. Formulg@p is satisfied at a place in a st&tdf it is true atp in all states
| = k; ¢ and [¢ hre satisfied at a place in stdteif ¢ is true respectively at some or at
every place in all statds> k.

We extend now the interpretation of atoms to interpretation of formulae by using in-



Consider now the distributed database described before. We can express the same prop-
erties inferred ir2 by using a Kripke model. Fix a Kripke stalke The assumption that
the two partsdoc,, doc,, can be combined ip in a statek to give the documerndoc can
be expressed ak, (p) F (doc; [ddc,) — doc. If the resourcedoc; anddoc; are assigned
to the placep, i.e., k, p) E doc; and k p) E doc,, then, sincek, p) E doc; [Cdbc,, it
follows that K, p) | doc.

Let us consider a slightly more complex situation. Supposektpa#( doc, [{doc, —
[ddc,)) at p~ According to the semantics @f there is some placesuch thatk,r) E
doc, [{dbc, - [ddc,). The semantics oftdlls us thatk, r) | doc, and &, r) | (doc, —
[ddc,). Since k,r) | doc,, we know from the semantics of that , r) E [ddc,, and
from the semantics of fiat , p) | doc,. Therefore, ifdoc; is placed ap in the statek,
then the whole documedbc would become available at plagen statek.

To give semantics to the judgements of the logic, we need to extend the definition of
forcing relation to judgements. We begin by extending the definition to contexts.

Definition 6 (Forcing on Contexts) Let K = (K, <, {P}xxs {Ik}kmx) be a Kripke model.
Given a statd in K, a finite set of pure formula, and a finite set of sentencAsuch that
PL(I"; A) [CB; we say thak forces the context; A (and we writek = T; A) if

1. for every¢ [Mand everyp [(By: (k, p) E [§]
2. foreveryy atq CA: (k,q) E ¢.
Finally, we extend the definition of forcing to judgements.

Definition 7 (Satisfaction for a Judgment) Let K = (K, <, {Plmx, {lk}kx) be a Kripke
model. The judgemerit; A [Py at p is said to be valid irfK if

* PL(N) CPL(A) CPL(w) L} [P
« for everyk [H such that B, if kK |F I Athen K, p) F u.

Moreover, we say thdt; A [Py at p is valid (and we writel"; A | p at p) if it is valid in
every Kripke model.

Although, it is possible to obtain soundness and completeness of Kripke semantics
directly, we shall not do so in this paper. Instead, they will be derived as corollaries.
Soundness will follow from the soundness of birelational semantics and encoding of Kripke
models into birelational models. Completeness will emerge as a corollary in the proof of
construction of finite counter-model.

3 Birelational Models

One other semantics given for modal intuitionistic logics in literature is birelational seman-
tics [11, 34, 26, 35]. As in the case of intuitionistic modal logics [24, 35], birelational
semantics for our logic enjoys the finite model property, while Kripke semantics does not.

Birelational models, like Kripke models, have a set of partially ordered states. The
partially ordered states will be calledorlds and we usey, v,w, ... to range over them.
Formulae will be validated in worlds, and if a formula is validated in a world, then it will
be validated in all larger worlds. To validate atoms we have the interpretgtiwhich
maps atoms into a subset of worlds.| Iinaps an atom into a world, then it will map the
atom in all larger worlds.

In addition to the partial order, however, there is also a second binary relation on the
set of states which is calle@achabilityor accessibilityrelation. Intuitively,uRwmeans
thatw will be reachable fromu. As our logic is a hybridisation folS5 the relationR
will be an equivalence relation. The relati®will also satisfy a technical requirement,
thereachability conditionthat is necessary to ensure monotonicity and soundness of logic
evaluation.

Unlike the Kripke semantics, the states will not have a set of places associated to them.
Instead, there is partial function, Eval, which maps a world to aingleplace. In a sense

9



which we will make precise i83.2, a world in a birelational model corresponds to a place
in a specific Kripke state. As we shall see later, the partiality of the fun&iatis crucial

in the proof of the finite model property. In the cdseal(w) is defined and ip, we shall
say thatw evaluatego p. w evaluatego p.



Proposition 10 (Monotonicity) Let Wpis be a birelational model oRls. The relation=
preserves the partial orderW, namely, for every worldvin W andd CHrm(PIs), if v=w
thenw | ¢ impliesv F ¢.

Proof The proof is straightforward, and proceeds by induction on the structure of formu-
lae. Here, we just consider the induction step in whicis of the formd,;@p. Suppose
thatw £ ¢1@p. Then there is a-such thawv R W] wH p andw = ¢.

Consider now = w. Sincew R W by the reachability condition we obtain that there
is a worldv-such thaw R vandv-= wt' As w-E ¢4, by induction hypothesis we obtain
VvHE ¢1. Now, asv’= wHandwH p, we getvH p by coherence property. Finally, aR V)
we getv E ¢, @p by definition. 1

Example 11 Consider the birelational mod¥V¢yxamWwith two worlds, sayw; andw,. We

takew; < w,, and both worlds are reachable from each other. The wayrldvaluates to
p, while the evaluation ofv; is undefined. LetA be an atom. We defingA) to be the
singleton{w,}. For any formulap, we abbreviat¢ - [a3-¢.

Consider the pure formulaA. Now, by definition,w, | A and thereforev, B —A.
Also, asw; < wp, we getw; B —A. This means that, E —-—A, andw; E —=—A. Hence,
we getwy, Wp F [=hA.

On the other hand, consider the formuia CAlWe have by definition thaty, B A. As
wj is reachable from bottv; andw,, we deduce thati, w, E [AlUsing the semantics of
-, we get thatvy, w, B =—[Al

We now extend the semantics to the judgements of the logic. We begin by extending
the semantics to contexts.

Definition 12 (Bi-forcing on Contexts) Let Wps = (W <, R, |, Eval) be a birelational
model onPls. Given a finite set of pure formulde and a finite set of sentencés such
thatPL(l"; A) [CPls, we say thatv W forces the context; A (and we writew | T; A) if

1. for everyp [T w | [d,Jand
2. for everyy atq CA: w F y@q.

In order to extend the semantics to judgements, we need one more definition. We say
that a placep is reachable from a worldg, if there is a world which evaluates fwand
is reachable fronv. The set of all places reachable from a wovlavill be denoted by
Reaclfv). More formally,

Reacltv) d=ef{p : wi p for somew [Reach



;% [=hAatpis bi-valid in the modeMVexam While the judgement E=hAat p [Pt
—=[Aht p is not bi-valid inWeam In fact, we will later on show that the judgement

: [=hAat p P -— [Aht pis valid in every finite Kripke model. Therefore, this example,
adapted from [24, 35], will demonstrate that the finite model property does not hold in the
case of Kripke semantics.

3.1 Soundness

The proof of soundness of birelational models has several subtleties, that arise as a conse-
guence of the inference rules for the introduction @l T)] and elimination o (¢ E). Let
us illustrate this for the case df.JRecall the inference rule dilfrom Fig. 1:

A P19 ¢ atq
r;A P1lghat p

To show the soundness of this rule, we must show that the judgdmant™ g at p
is bi-valid whenever the judgemeftA P19 ¢ atq is bi-valid. Now, to show that the
judgement™; A [P1 [kt p is bi-valid, we must consider an arbitrary world, sayin an
arbitrary birelational model, saypis, such thaP [Reaclkfw) andw [ I'; A. We need to
prove thatw E [@@p also. For this, we need to show that for any worlth \Wp|s such
thatw < w'R vfor somew'/ it is the case that = ¢. Pick one sucl and fix it.

Please note that without loss of generality, we can assuméthdbes not contaiig
(otherwise, we can always renameén the model). To use the hypothesis tiian P19
¢ at qis bi-valid, we must consider a modification \@¥pis. One strategy, that is adopted
in the case of Kripke semantics [7], is to add new won@sone for each world/™= v.
The new wiorlds



(g, v) satisfiesh. As mentioned above, this is equivalent to saying thedtisfiesp.
We are ready to carry out this proof formally. We begin by constructingtéeension,
and showing that this is a birelational model.

Lemma 16 (@-Extension) Let Wpis = (W <, R, |, Eval) be a birelational model oRlIs.
Given a new placg [RIs, we define therextensiorW [qlaleto be the quintuplewS'<™
, RE1HEval, where

1. PIs™ pis [{q}.
2. W' R ) x w).
3. <H W% WHis defined as:
- (whw) <H(vElv) if and only if w-s< viandw < v,
- (q,w) <Hq,v) ifand only ifw < v;
4. RPCW-x Whis defined as:
- (WEw) RVEw),
- (W5w) R(g, w),
- (g, w) R"w"'w), and
- (W) R w).

5. 1&: Atoms- Pow(WY is defined as:
def

- 1A = { (wWw) |woCHA), wRw} C{{g,w) |w CTA) };
6. Eval”: W-_, PIsHs defined as
- Evafwtw)) €' Evalw for every (w) CR,!
- Eval'f(g, w)) d=efq for everyw [CW.
Theg-extension is a birelational model.
Proof We need to show the five properties of Definition 8.
1. ClearlyWHs a non empty set ¥V is.
2. Since< is a partial order, thegs a partial order too.

3. The relationR s an equivalence by definition. We show tHatsatisfies the reacha-
bility condition by cases. There are four possible cases.
Case a. Assume that'{v) =Hw5'w) Rtw™'w).
The hypothesis says that=> w, vP= wf viRv, wwrRwandw™Rw. Since R
is an equivalence, we get'> w-Rw™ Using the reachability condition foR,
there exists/™ W such thav R V"= w™ Hence, we conclude/{'v) R"v™v) >
(Whw).
Case b. Assume that,(v) ={(q, w) R tw5w).
This means that = w andw R w-' By the reachability condition foR, there is a
vEsuch thav R V= wh and we concludeg(v) R{vEv) =Hwhw).

Case c. Assume that'{v) =H(w"'w) R g, w).
This means = w, and we concludev(;v) Rq, v) =(q, w).

Case d. Assume thad,(v) =g, w) R(q, w).
We havev = w, and we conclude v) R g, v) =(q, w).

4. To check monotonicity fok'we consider two cases:

Lin the equality, the left hand side is defined only if the right hand side is.
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Case a. Assume thatf'w) CTi{A).
This means that™~[I{A). If (v5v) =HwHw), thenv= wt' By the monotonicity
of I, we getv™[IT{A). Hence ¢5lv) CIHA).
Case b. Assume thad,(w) CITA).
This means that CIA). If (g, v) =(g, w), thenv = w. By the monotonicity of
I, we getv [I[A). Hence (V) CTi(A).

5. According to the definitionEval“is a partial function. We need to verify the two
properties required for a birelational model.

Coherence We have to show that if a world in the new model evaluates to some place,
then all the higher worlds evaluate to the same place. There are two possible cases.

Case a. Assume that'({v) =Hw5'w), and W5'w)! p
We get by definitiony™> w-andw p. By coherence on the modeVp;s,
we getv{ p. Hence ¢5'v)! p.
Case b. Assume tha,(v) =M(qg, w).
We have by definition,d, v){ g and @, w)! g.
Uniqueness We have to show that two 8efent worlds reachable from each other can-

not evaluate to the same place. Ap\) always evaluates tq, two worlds v, v)
and @, w) cannot evaluate to the same place. There are two other possible cases.

Case a. Supposg{v) Rtw5w), WHw)i pand ¢5V)! p.

We have by definitiov™R v, w"Rw, v = w, wH p andvd p. SinceR is an
equivalence and = w, we getv"R W~ By uniqueness olVp;s, we getv™= wt’
Therefore ¢5v) =Hwhw)

Case b. Suppose that, ¢) Rq, w), (g, w)! gand @,V)! g.
We have by definitiov = w, and henced, v) = (g, w). 1

We will now show that if a pure formula, sdy does not mentiog, then (v5'w) satisfies
¥ only if w-does. Furthermoreg(w) satisfiesp only if w does.

Lemma 17 W qlgls-is conservative) Let Wpis = (W, <, R, I, Eval) be a birelational
model, and leW [l = (WH<T RYI1FEval be itsg-extension. Let and = extend
the interpretation of atoms MVpis andW [qlplsrespectively. For everyg CHm(Pls) and
w W, it holds

1. for everyw R w, (W5'w) E' if and only if w-E ¢; and
2. (@,w) E' if and only ifw E ¢.
Proof Prove both the points simultaneously by induction on the structure of formulae in
Frm(Pls).
Base of inductionThe two points are verified on atoms, dnand on[Chy definition.

Induction hypothesisWe consider a formulgé [Hrm(Pls), and assume that the two
points hold for all sub-formulag; of ¢. In particular, we assume thimr every wCW:

1. for every wR w, (w5'w) E%; if and only if w= ¢;; and

2. (g, w) E'; if and only if W ¢;.

We shall prove the lemma only for the modal connectives and for the logical connective
—. The other cases can be treated similarly. We shall also only considerlpaistthe
treatment of poin® is analogous. We pickw W andw"R w, and fix them.

« Cased = ¢1 — ¢o. Supposeww) E'd1 — 2. Then
for every ¢5v) =Hwhw), we have ¢5v) E', implies ¢5v) E',. (2)

We need to show that™}= ¢. Pickv-=> w-such thav™F ¢4, and fix it. It suLces
to show thawv= ¢,.

14



We havev-'= w-Rw. By the reachability condition, there existsCW such that
viRv> w. Hence, ¢5v) =Hwhw).

The induction hypothesis says that'{) E'd1. We have ¢5'v) E'd, by (2) above.
HencevE ¢,, by applying induction hypothesis one more time.

For the other direction, assume thdtE ¢; — ¢,. Then

for everyv-= wh we havev' ¢4 impliesv-E ¢.. )

Now consider ¢;v) =M(w5w), and assumevfv) E'd;. From ¢5v) =2 whw),
we havev™= wt! From ¢5v) E',



2@

Proposition 18 (Forcing Propagation) Let Wpis = (W <, R,V, Eval) be a birelational
model onPls. Let T be a finite set of pure formulad,be a finite set of sentencés andw
be a world inW such thawv = T'; A. Then

1. vET;AforeveryvRw and
2. vET;Aforeveryv=w.

Proof The second part of the proposition is an easy consequence of monotonicity of the
logic. For the first part, pick Rwand fix it. We need to show that if is a formula in"
thenv E [f]and that ifp at p is a sentence in thenv E ¢@p.

Now, if ¢ [TJ, then we have that F [0l Letv5vTbe two worlds such that"™R V= v.

We witlisthow that



fix it. By Proposition 18w I'; A. We shall show that}= [d,Jand we will be done.
In order to show thaiv"}= [@,lwe have to show that= ¢



Assume thatK5'p) =H(k, p) R, g). Then it must be the case that= k, k = | and
q [B,. Sincek = |, we getq [By. Furthermore, ak~> k, we haveP, [P Therefore
q [(Bxa

Consider the worldk5'g). We get K5 pY R¥k5q) =H(k, ) by definition. 1

The encoding preserves the forcing relation:

Proposition 21 (Forcing Preservation) LetK = (K, <, {P}m {Ik}k i) be a Kripke mod-

el with set of place®ls. Let WK, = (WF<T RTITEvaly be theK-birelational model.

Let Ex andfyw extend the interpretation of atomskh andWﬁS respectively. For every
¢ CHm(PIs), k CH, andp Bk, we have:

(k. p) Fx ¢ if and only if (k, p) Fw ¢.
Proof We proceed by induction on the formualBrm(PIls). The statement of the propo-
sition is easily verified o, ahd on atoms.
Induction hypothesidiVe consider a formulé CHrm(Pls)]and



and order are essentially orthogonal. Hence, the reverse encoding will fail to preserve the
forcing relation.

This is no accident, and as we have pointed out before, partiality of the evaluation
in birelational models is essential for the proof of the finite model property. This was
illustrated by the “finite modelWeyamin Ex. 11. INWeyam it is the case thaty; < ws,
w1 Rws, wit andws i p. As discussed there, this model allows us to refute the judgement
;[=hAatp [P - [Akt p. As we will see later, the judgement will be valid in every
finite Kripke model.

We shall now use the encoding and soundness of logic with respect to birelational
models to show soundness of Kripke semantics.

Corollary 22 (Soundness)If ;A [Plu at p is derivable in the logic, then it is valid in
every Kripke model.

Proof Suppose that the judgemdrtA [Plp at p is derivable. Then it must be the case
thatPL(I"N) CPL(A) [CPL(n) I} (A LetK = (K, <, {Phvma {Ik}kx) be a Kripke model
with set of place®ls. Letk extend the interpretation of atoms to formulae on this Kripke
model. Letk be a Kripke state of this model such tHatC B andk Fx I'; A. We need to
show thatk, p) Fk L.

Consider the encoding of the Kripke mod€linto a birelational model. LéW§ =
(WH<H RYIDEvaly be theK -birelational model, and consider the world ) Ij\/E If
Ew is the extension of interpretation of atoms in this model, we claim g (Ew I; A.

If ¢ CAthen ak Fk T; A, we get by definitionK, p) Ex [ By Proposition 21, we
getthatk, p) Fw L

If ¢ atq [, then we have by definitiork(q) Fx W. By Proposition 21, we get that
(k, @) Ew U. Now, by constructionk| p) R'(k, g), and hence we gek(p) Fw V@a.

Therefore, we get thak(p) Fw I; A. As the logic is sound over birelational models,
we get Kk, p) Fw H@p. This implies thatk, p) Ex p@p, by Proposition 21 once again.
Finally, this is the same ak,(p) Fk U, by definition, and we have done. 1

4 Bounded contexts and Completeness

In this section, we shall prove completeness of the logic with respect to both Kripke and
birelational semantics. The proof will follow a modification of standard proofs of com-
pleteness of intuitionistic logics[19, 35, 7, 36], and we will construct a particular Kripke
model: thecanonical bounded Kripke modeélhe reason for the term “bounded” shall be-
come clear later on. We will prove that a judgemEpA [Py at pis valid in the canonical
bounded model if and only if it is derivable in the logic. Then we will use the encoding of
the Kripke models into birelational models (s§%2), which will allow us to prove com-
pleteness of birelational models. The resulting model will be used to prove the finite model
property in§85.3. The construction of the model is adapted from [35].

We also point out that we shall prove the completeness results in the caseRvisere
finite. This is not a serious restriction for completeness, and the result can be extended to
judgements wher® is infinite. The real advantage of using a finite set of places is that it
will assist in the proof of finite model property as we will se€gth

We begin by defining sub-formulae of a pure formulasub-formulaofia pure formula,



Definition 23 (Bounded Contexts) Given a finite set of placeB and a finite set of pure
formulae® [CHm(P), a pair Q,4) is a (P, ©)—bounded context

« Qis afinite set of places that contaiRsi.e., P [Q; and
= Ais afinite set of sentences of the fodnat g, where¢ [@%andq Q.

The bounded contexts will be used as Kripke states in the canonical model. However,
we will need particular kinds of bounded contexts.

Definition 24 (Prime Bounded Contexts)Let ©, [CHrm(P) be two finite sets of pure
formulae on the finite set of placéa A (P, ©)—bounded context@, A) is said to be
—primeif
e ;A [RI¢ atgfor ¢ CA@~Andq [Q, implies thatp at q A (@-deductive closure);
« ;A [®1 Callq for everyq CQ (Consistency);
e ;A [R¢ [dat q for ¢ QIO Andg [CQ, implies that eithed atq CA or Y atq CA
(©-disjunction property); and
e ;A [Pepatqfor ¢¢ CO®~andg O, implies that there existg~ D such that
¢ at g~'CA (©-diamond property).
As an example, lef be an atom. LeP = {p}, © = {A@p} andQ = {p, q}. Consider
the following sets of sentences:
« Ay ={Aatp, Aatg, A@Qpat p};
« N\, ={Aatp, Aatg, A@patp, A@p atq}; and
e Az={Aatp, Aatq, A@patp, A@patq, +Aatqg}.

Clearly, we have tha® Q. If Y atr is a sentence if\; or Ay, theny is a sub-formula of
© andr M. Therefore, Q,A;) and @, A,) are P, ©)— bounded contexts. On the other
hand, Q, A3) is not a £, ©)—bounded context a#A is not a sub-formula cA@p.

If we let I to be the list{A}, then it follows easily thaf’; A; [ Aatp. Using the
inference rule of introduction of @, we gEtA; [R1 A@p atq. However, we have that
A@p atq CA;. Therefore, Q, A;) is notl—prime. On the other hand(X A,) is F—prime.



The setArequired in the lemma would be a subsetofand the seQ“would be a
subset ofQ Q). These sets would be obtained by a series of exten&igrd, which will
satisfy certain properties:

Property 1 For everyn=0
1. Qn [Q QL andA, L]
2. Qn [Qhe1, An Chhyy;
3. (Qn, Ay) is (P, ©)-bounded context; and
4. Tz, R yatq.
The series is constructed inductively. In the induction, at an odd step we will create a

witness for a formula of the typed. At an even step we deal with disjunction property.
We shall also construct two sets:

- treated, that will be the set of the formulasgd [@for which we have already created
a witness.

- treated,, that will be the set of the formulag, [} atq 3 which satisfy the disjunc-
tion property.

We pick an enumeration a®5’ and fix it. We start & By definingtreatecg = [1
treateq‘):‘: Lo = Q, andAy = A. Itis clear from the hypothesis of the lemma that
Qo andPy satisfy the four points of Propertyl.

Then we proceed inductively, and assume BatA, (n = 0) have been constructed
satisfying Property 1. In step+ 1, we consider two cases:

1. If n+ 1is odd, then pick the first formulpy, [} CO%In the enumeration d®™ such
that

e A, ¥



This contradicts the hypothesis @, A,. Hencel'; Ay [SF ) at . Therefore Qne1
andAn.; satisfy Propertyl.

erefore, we g@ construction th@k, A, satisfy Property 1. We defin@™ =
=0 Qn, andA™=""_" A,. Now, using Property 1Q" Q@ [Q, andA™ 3. This
implies thatQ-andA™are finite sets. (Note that this means that the se@gs/,) is even-
tually constant). Using Property 1, we can easily show t@&tA™ is a (P, ©)— bounded
context, and™; AT'[R1'y at g.
Finally, we defineA™to be the set of all sentencésat s [ such thaf; Amlﬁfq) ats.
As a consequence of Proposition 25, we get that

M AP yatr if and only if [; AT patr (6)
Clearly, ABextendsA™and hencé). Furthermore, Q5'AY is (P, ©)—bounded by con-

struction. Also we gef; A” 53 g at g, thanks to the equivalence (6). We only need to
show that Q5'AY is M-prime.

1. (Deductive Closure) The satis deductively closed, by construction.

2. (Disjunction Property) Assume th&tA” [ y, b atr, for ¢, Cqh, C®“and
q QY Then letn be the least number such thatA, 1 ; Ch atr. Clearly,
Y, CObatq CHreated,'andl; Ay (90 @y b atq for everym = n. Eventually
Yy [ at g has to be treated at some odd sthgen. Hence, eithet; atr [CAn.q Or
W, atr CAneq. Thereforey; atq CAor g, at q CAY

3. (Diamond Property) Assume tHatA 21 ¢4 atr, for ¢¢ [Oandr CQ Then letn
be the least number such thHatd, [C1 ¢¢ atr. As in the previous case, we assert that
+¢ atqis treated for some even numidee n. We getd at g,y CA“by construction.

4. (Consistency) If; A [Catr, thenF;AD@w@q atr by the rule [E1 Therefore,
I APRT'y at g by @E, which contradicts our construction. Hen€eAPR Cailq.

We conclude that@5'AY is al-prime and P, ©)— bounded context extendin@(A)
such thaf"; A [R7'¢ at p. J

We finally construct the bounded canonical model. In the model, the set of Kripke
states is the set of prime bounded contegs/) ordered by inclusion. A place belongs to
the state Q,A) only if it is in Q, and an atonA is placed in a place in the state Q, A)
only if Aatr CA. More formally, we have

Definition 27 (Bounded Canonical Model)



2. if [ is the forcing relation oKcap, then for everyp C@®5'every Q,4A) K, and
everyqg CQit holds: @Q,A) Fx ¢ atqif and only if ¢ atq CA.

Proof Clearly, all the properties required for a Kripke model are verified. All we have to
prove is the par® of the lemma. The proof is standard, and we proceed by induction on
the structure of the formuld O In the induction hypothesis, we assume that gaot

the lemma is valid on all sub-formulae ¢fthat are in0~ Please note that @ CQ5’then

all of the sub-formulae of are in@~'Hence, we can apply the induction hypothesis on all
the sub-formulae of. Here, we just illustrate the inductive case in whicls L[l

Case [y Assume that@,A) Fx [hiat g, where [yl C@" By definition, this means
that for every Q5AY = (Q, A) and every QW



FurthermoreA is contained irk. Therefore, by Lemma 28() %) Fx [ at qwhenever
patq CA.

Hence, we get that the Kripke stat@, ) = I'; A. By our assumption, we gefX Z) Fx
¢ at p also. By Lemma 28, we gdiatp [I. However our choice of), ~ was such
thatd at p [CI. We have just reached a contradiction, and hence we can conclude that
r,A P19 at p. 1

Now, by the encoding of Kripke models into birelational models (see Proposition 21),
if a judgement is valid in all birelational models then it is valid in all Kripke models. As
the class of Kripke models is complete, we get that the class of birelational models is also
complete for the logic.

Corollary 30 If Pis finite and the judgemeiit A [*1$ at pis bi-valid in every birelational
model, then it is provable in the logic.

Proof Suppose that the judgemdrtA F1¢



contain infinite many worlds. However, by using techniques similar to those used in [35],
we will be able to construct a finite model that is equivalent to the counter-model. The
key technique in the construction is the identification of tripl@s/, q) that diled only

in renaming of places other than thoseRn We start the proof by discussimgnaming
functions

5.1 Renaming functions

First, we discuss renaming of places in formulae and judgements. Given any two sets of
placesQ, Q,, arenaming functions a functionf : Q; - Q.. Intuitively, f renames a
placeqin Q; asf(q).

Given a renaming functiod : Q; - Q., we can extend to a function from the
setFrm(Q,) into the setFrm(Q,) by replacing all occurrences of placgdy f(g). More
formally,

e (A % A for all atomsA,;

def

e f(d1°02) = F(¢a) o f(¢2) for o AL M I},

def

= f(¢@q) = f(¢)@f(q);

def def

o f(od) = of () and f(LQN = CE().
This can be further extended to contekt\ by applying f to all formulae inl" and all

sentences i\, with f extended to sentences H® at q) def f($) at f(q).
If f is a renaming function, then we can transform a proof of a judgeifight 1
¢ at g to a proof of the judgemerft("; A) [%4 f(¢) at f(q):

Lemma 32 (Provability Preservation Under Renaming) Let f : Q; — Q. be a renam-
ing function. Then for any set of pure formulBieany set of sentences any formulad
and any placeg such thaPL(I") CPL(A) [PL(¢) [({d} [ Q,, we have:

M A 2 ¢ atqimplies f(; ) [$% £(9) at f(q).

Proof Intuitively, in order to obtain a proof of(I'; A) [ f(¢) at f(q), replace all occur-
rences of placesin the proof ofl"; A [®1 ¢ at q by f(r).

More formally, we prove the lemma by induction anthe number of inference rules
applied to derive the judgemeftA [©1 ¢ atg. Please note that the induction is on the
number of inference rules applied, and we will vary the §gt4\, and the formula in the
proof. Please recall that the inference rules are given in Fig. 1.

Base Case (1= 1). Then the rule applied is one amondgstG, and [TIf the applied
rule isL, then¢ at q CA. Hencef () at f(q) CT(A). An application of the ruld. gives us
f(F;A) 44 () at f(q). The cases dB and [TIbllow immediately.

Induction hypothesis (& 1). We proceed by cases, and consider the last rule applied
to obtainl; A [®1 ¢ atq. The treatment of the rules involving the logical connectives is
fairly straightforward, and we show the three most interesting casésiI@giand¢E.

@I: Assume that the last rule applied isl @Then¢$ = y@r, for some pure formulg []
Frm(Q.) and some place Q. Furthermore[;A [® y at p is derivable by using
less tham instances of the rules.

The induction hypothesis says thdf"; A) [ f(y) at f(r). Using the rule @, we
getl;A 21 f(V)@



The induction hypothesis says thel{r; A) [&*% f{y) at oy AsT,Aandy do
not containgy; we havef(r'; A) = f(I'; A) and f'y) = f(y). Therefore, by using the
inference rule[TIwe getf(";A) [ [FQ)) at f(q). We conclude by observing that
f(L = CEQ).

¢E: Assume that the last rule applied4&. Then¢ = &y for some pure formula [
Frm(Q.). Moreover, there exigi’ [Qy, ¢i’CQ,, andp CErm(P) such that:

— A& e atqm%s derivable by using less tharinstances of inference rules; and

— I;A patqgy (9% yatq is derivable by using less thaninstances of inference
rules.

By induction hypothesis on the first judgement, we t@; A) [ «f () at f(qY.

Now, letQ;"= Q; (40, andA™= A d atg}. We choosey,’ CQ,. We define
f= Q' ~ QFasfr) = f(r) forr [CQy, andf' (o) = q

By induction hypothesis on the second Judgement wef(ft A, patql) (A%
fy) at f'(g). Now, f"is the same ad on Q;, and thereforef {T"; A, pat a) =
f(I'; A), f(u) at gy by definition. Hence, we get th&(T; A), f (1) at g5’ ("% f(y) atq.

We concludef (I'; A) [ f(y) at f(q), by using the inference rukeE. 1

For example, let us consid€l; = {p,q} and letQ, = {r}. Letf : Q; - Q2 be the
function f(p) = r, f(g) = r. Let A be an atom, and ldt to be the empty list. We have
I Aatp &1 A@p atq. Then by the Lemma 3Z; Aatr [23 A@r atr.

5.2 Pointed Contexts and Morphisms

Let P, Q be a finite sets of places such thati_Q. Let® [Hm(P) be a finite set of pure

formulae with sub-formula closur@"' Please recall that given a finite set of senterkes

we say that Q, ) is a (P, ®)—bounded context if for every sentengetr it is the case

thatp CO@~andr CQ. Given a P, ©)—bounded context@, A), we will say that Q, A, g)

is a pointed (P, ©)—bounded contexf g Q. Henceforth, we refer to such triples as

(P, ©)—pcontextsgrhe elf 4 9.963 Tf 17.212 053 9.963 T 9.963 Tf 7.206 3.617 Td[(() 9.963 T 9.963 Tf 7.206



Clearly, [[id a preorder. The identity function gives reflexivity, and function composi-
tion gives transitivity. This makes the relatidrah equivalence relation. W is a pcontext,
then we shall useq] to denote the class of the pcontexts equivalemt Wwith respect to the
relation L We shall use these equivalence classes as the worlds of the finite counter-model,
and the order amongst the worlds will be given by the preofdéivVe will now show that
the relationCphtrtitions the set of pcontexts into finite number of classes. Please note that
it is in this proof, we use the fact that the $&is finite:

Lemma 34 (Finite Partition) The set of P, ©)—pcontexts is partitioned into a finite num-
ber of equivalence classes by the equivalehcé

Proof We will show that every®, ©®)—pcontext is equivalent to@nonical pcontextThe
set of canonical pcontexts will be finite. Before we proceed, please notP trad© are
finite sets by definition. Hence, the sub-formula closBténd the powerséow(©Y'must
be finite sets.

We will now define the set of canonical pcontexts. For eaAch @™ve choose a new

placer o [B such thatr o, 1A, if Ag CA,. Leth:E’f{ r o : /A CAY The cardinality

of Ris the same as the cardinality Bdw(OY! and hencé is finite. A canonical pcontext
will have places among$® [CR Furthermore, the canonical pcontext will contain the
sentence at r p if and only if r 5 is a place in the pcontext ad CA. More formally,

we say that the tripleQ, Z, g) is acanonical(P, ©)-pcontexif
e Qis aset of places such that[CQ [P [RI
* Ais the union of two setAp andAg, where
1. Ap is a set of sentences such tipadt s [ means thap [@~&nds [R; and

2. Aris the set ofall sentence® at r A, where¢p A andr o, C®n R In other
words,Ar déef{cl) at ra: ¢ CA raA CONRL

*qLQ

Clearly, a triple that satisfies the above points iB®{)—pcontext. Furthermore, as the sets
P, R, @ re finite, the set of canonical pcontexts must be finite also.
We will now show that for every pcontext = (Q, A, g) there is a canonical pcontext
equivalent to it. This would immediately give us that the number of equivalence classes
induced by[id finite.
Letw = (Q, A, g) be a P, ©)—pcontext, and fix it. Fos [Q, let H(s) (A be the set
of formulae¢ such thath at s CA.
We now definewv'= (Q5AYqY, the canonical pcontext equivalentwoas follows. P
will be contained inQ" For eachs L@\ P, we add the place (g to Q- Forp [P, a
sentenceh at p will be in AMonly if it is in A. A sentenceb at r g Will be RIEHDEE3.616 Td[ (G PIFFAIERREBT A



Clearly, QAR qYis a canonicEaI]I{’, ©)—pcontext. Moreover, the renaming functions
def S if s [,

. _ O =
f:Q—Q UCh I neg Otherwise
if t OB
AL def EEif t = q-
9:Q—Q b otherwise, wheré CQ\ P is chosen s.t.
t=r H(l)-

are morphisms frorw to w-and fromw"to w, respectively. We conclude that Cwl~” [

5.3 The Finite Counter-Model

Given a finite set of placeB, two finite sets of pure formulag, @ [Hrm(P), let Kcan

be thel—prime and P, ©)—bounded canonical Kripke model as define@4n(see Defini-

tion 27). Now, letW¢,n = (W, <, R, I, Eval) be theK ,,— birelational model obtained by
using the encoding df,n into a birelational model (se€&8.2). We cal\WV ¢4, theN—prime

and P, ©)—bounded canonical birelational model. Please recall from the proof of com-
pleteness (se®d) that if a judgemenk; X [P1¢ at p is not provable, theWV 4, provides

the birelational counter-model for the judgement for an appropriate chof@e of

The worlds oW, are pcontexts@, A, g) where Q, A) arel'—prime and P, ©)—bou-
nded. Two worldsv; = (Qq, A1, q1) andw, = (Qy, Ay, Op) are reachable from each other
if Q1 = Q andA; = A,. Furthermore, Qq, A1, 1) < (Q2,02,02) if Q1 [CQy, Ay [,
andq; = . Aworldw = (Q, A, q) CI(A) for some atomA if Aatq CA. The evaluation
is a total function, and&((Q, A, q)) = g. Furthermore, as a consequence of definition of
canonical models, a world = (Q, A, ) forces a formulap [@f and only if ¢ at q CA.

Even though the worlds in canonical birelational are composed of bounded pcontexts,
the set of the worlds may itself be infinite. Following [35], we shall construct a model,
called thequotient modelequivalent to the canonical model. For this model, we will use
morphisms between pcontexts. Please recall that given pcomtexsdw,, w; [, if
there is a morphism fromy; into wp, andw; [ if wy [l andw, [, The relation
[[i9 a preorder and_id an equivalence. The set of equivalence classes generatedby
finite by Lemma 34. We writew] for the equivalence class of.

In the quotient canonical model, the set of worlds will\bg—; the set of equivalence
classes generated hyoh W. We have thaw, —is finite. Our construction will ensure that
w in the canonical birelational model forces a form@il@& @ ~bnly if [w] forcesé.

In the quotient model ;] will be less than ] only if wy [al. As [[id a preorder,
it follows easily that this ordering is well-defined. R is the reachability relation on the
canonical model, thennj;] is reachable fromv,



1. The set, s the set of the equivalence classes generated by the relatibivv.
2. The binary relatios"is defined as:1] <Hwo] if and only if wy [

3. The binary relatiorR"is defined as: W] R'fwy] if and only if there existsvi’ [Tiv,]
andws,’ CTW,] such thatv; R w;!

4. The functionl = Atoms— Pow(W, s defined as:

def

1¢A) = {[w] : w [TTA)}
5. The partial functiorEval™: W,—+ P is defined as:

1 .
if w=(Q,A, p)andp [H,

def P
Evalw)) = ot defined otherwise.

As we discussed befores) RY I Pand Eval-in the quotient model are well-defined.
We show that the relatioR His an equivalence:

Lemma 36 (Reachability is an Equivalence)Given a finite set of placeP, two finite
sets of pure formula€, ® CHm(P), let W, = (W, <, R, I, Eval) be thel—prime and
(P, ®)—bounded canonical birelational model. MY,—F (W5 RY15Eval be the
quotient model oMV,n. Then RHs an equivalence.

Proof The reflexivity and symmetry oR“follow from the reflexivity and symmetry of
R in the modeMV.,,. We need to show thaR Hs transitive.

Pick [wa], [wo], [ws] W, —such that ;] RPw,] Rfws], and fix them. By definition,
the assumptiony] R fw,] R fws] is equivalent to saying that there amg) w5, wiws! CW
such thatv; DR W’ Db andw, [Cuk’'Rw,' k. As Cid an equivalence, we get

wi R’ DR w! @)
In order to prove transitivity, we will first show that there are two wonrgsandvs in
W such thatw}’ [ Rv W3 This will give us by definition ;] R"fw], and hence
[wi] R"Pws].
Now, the assumptions in (7) and the definitionRfsay that

1. WH= (Qq, Aq, qr) andwi’= (Qq, Aq, ), where Qq, Ay) is al-prime and P, ©)—bound-
ed context, and;, g2 [Q;.

2. W= (Qy, Az, ) andwi= (Qz, Az, 03), Where Q,, Ay) is al-prime and P, ©)—bo-
unded context, and;/ gz CQ,.

3. (Qu A1, o) (M, A2, q5), i.e, there exist two morphismé: Q; -~ Q; andg: Q, —
Q1 such thatf(qp) = g5’andg(ql) = .

Without loss of generality, we can assume fRat= P [RlandQ, = P [(RAwith RinR, = []
(otherwise, we can rename the placeAjandRy,).
(Q1 [, Ay [CAY) is (P, ®)—bounded as@1,4;) and @2, Az) are bounded contexts.

We |etV1 d:ef (Q]_ mz, A]_ IIb, ql) andv3 dZEf (Ql mz, A]_ IIb, Q3)
Now, consider the triple; = (Q1 CQb, A; [AY, q1). We have Q; [Qh, Ay A}, ;) [
(Q1, A1, 1), by considering the two renaming functions

G1:Q L 17 G2:Qi—- Q1 [
G Jotern  G@%q

Please note that agis a morphismg(q)



Similarly, (Q1 [CQ@p, A; A, g3) (M-, Ay, g3) by considering the morphisms

F1:Q1 L 17 Q2 F2:Qx— Qi [h
F@E DI @

We get that/s [

If vi andvs are worlds inW,n, thenvy R v by definition. In that case, andv; are the
worlds we are looking for. In order to show thatandvs are indeed worlds iW ¢y, Wwe
need to show that thé>(©)—bounded context@, b, A; CA}) is M-prime.

In order to show that@®, [CQ}, A; [AJ) is F—prime we need to show the four properties
required by Definition 24. We will prove here only tRedeductive closure property. The
treatment of other properties is similar.

Assume thaf;A; [ [R5 ¢ atq for somedp C®. We consider two cases. If
g [@,, then consider the renaming functi@ defined above. NovG; fixes Q; and



morphism fromw; to w, that fixesq. Thereforew, = (Qz, A, q) for someQ, and
A;. By definition, we conclude thang] ! g.

UniquenessConsider yi], [wo] W, —such that {;] R'fw,]. This means that there
existwi; w;’ CW such thawy, CWRw;’ [Cul,. Assume thats] 1 g and W] L g.
Thenw i gandw;i gin Wean. The uniqueness propertyW.a, says that'= w’
Hencew; mllﬂ [wh. We concludeyy,] = [ws] as required. 1

We will show that a worldw forces a formula i®in the canonical birelational model
if and only if [w] forces the formula in the quotient model. For this, we will need the
following proposition which states that given worlds [ in the canonical model, ifi
forces a formula ir©®~hen so doew,:

Proposition 38 (Forcing Preservation Under Morphisms) Given a finite set of placeR,
two finite sets of pure formulag,©® [CHM(P), let W¢an = (W <, R, 1, Eval) be the
—prime and P, ©)— bounded canonical birelational model. Le{y, be the extension
of interpretatiorl to formulae. Then for everyw, w, CW, andd Q"

1. If wp [wb, thenwy Ew ¢ impliesw, Ew 6.

2. Ifwy Db, thenwy Fw ¢ if and only ifw, Fw .

Proof We prove the first point as the second one is straightforward consequence of the
first one. Considew;, w, [V, such thatv; [CwW,. This means thatv; = (Qq, A1, 1)
andw, = (Q2, Ay, 02) Where @, A) arel-prime and P, ©)-bounded contexts far= 1, 2.
Moreover, there is a morphisi: Q; - Q. such thatf(q;) = q.

Assume thatv; Fw ¢ for somed O This means from the definition of canonical
birelational model tha$ atq; [CA;. Sincef is a morphism fromw; to wy, we get that
¢ atg, [CA,. Once again, we get from the definition of canonical birelational model that

w2 Fw 6. 1

We are now ready to prove that if the worldn the canonical birelational model forces
¢ [A@%'then the world ] in the quotient model also forcds and vice-versa.

Lemma 39 (Quotient Forcing Preservation) Given a finite set of placeg, two finite sets
of pure formulad’, © [CFIm(P), letW¢an = (W <, R, |, Eval) be thel'—prime and P, ©)—
bounded canonical birelational model. M, —5 (W5 R 15 Eval”



¢2. The induction hypothesis says that] =, —$.. As [w'is an arbitrary world larger
that [w], we can conclude that] F/—¢1 - ¢2.

For the other direction, let] =,—¢. This means that for everyff ="[w]: if
(W /%1, then W E/-$2.

Consider nowwv™="w. We have W] ]\ also. If we assum&"Fw 1, then
the induction hypothesis says that] F,—¢1. Then W7 |, —¢2, and sov—Fw ¢, by

induction hypothesis. We conclude thvatw ¢1 — §o.
Case ¢ = [da Letw Fw ¢. We need to show that F,—{ il Consideryv;] =-{w] and

[w2] Rwy]. It suces to show thatf,] =, —¢1. The hypothesisw] Rfwi] =M[w]
means thatv; [w andw, [l Rwy, [l for some worldsws, w, CW. We get that
wy; Cwas ]



Corollary 41 (Decidability) The provability of the judgemerit; A [Pl at p is decidable
in the logic.

Proof Let PrbePL(IN) CPL(A) CPL(¢) CIp}. By Proposition 31J; A [F1¢ at p if and
only if I'; A L} ¢ at p. As the functionPL can be déedtively computed, we just need to
consider the judgement A i?q) at p for the decidability result.

We can enumerate all proofs in the logic in which the set of places considered is finite.
Hence, we obtain anl@dtive enumeration of all provable judgements. We can algd-e
tively enumerate all finite birelational models, aridedtively check whether the judgement
A [PT¢ at pis refutable in a given finite birelational model. As a consequence of the fi-
nite model property proved above,A [PT¢ at p s refutable only if it is refutable in some
finite birelational model. By performing these enumerations and checks simultaneously,
we obtain an &edtive test for provability of ; A ﬂq) at p. 1

The procedure detailed in the corollary above would not have worked if we had used
Kripke models instead of birelational models. This is because the finite model property
fails for Kripke models. For example, consider the judgemdritA at p [P = [Aht p.

We claim that this judgement is valid for eveiyite Kripke model.

Indeed, lek be a Kripke state in some finite Kripke mode€lsuch thatk, p) £ [=3A.

Pick| = k in K such thatl is maximal with respect to the ordering of Kripke states. As
(k, p) E [=hA, we get by definition that (r) E —=—A for every place in the statd. From
the semantics of implication and the fact th&g a maximal state, it must be the case that
(I,r) E Afor every place in the statd. Again, asl is maximal, we getl(p) F [Aland
therefore [, p) E ——[Al As the model is finite, there is always a maxirhabove any
k™= k, and then|( p) E [AlWe concludek, p) E - [Al

On the other hand, we showed that the judgement is not valid in the finite NMdggl,
in Ex. 11. The modélVeyamhas two worldsv; andws, such thatvy < w,, wi Rws, 1(A) =
{wo}, wit andw,! p. As we discussed thergy, E [=+A andw, B —-—-[Al As we
mentioned before, this example is adapted from [24, 35].

6 Related Work

The logic we studied is an extension of the logic introduced in [16, 17]. In [16, 17], it
was used as the foundation of a type system for a distribhtedlculus by exploiting
the proofs-as-terms and propositions-as-typesadigm. The proof terms corresponding
to modalities have computational interpretation in terms of remote procedure cal)s (@
commands to broadcast computatiohg fand commands to use portable codg (The
authors also introduce a sequent calculus for the logic without disjunctive connectives, and
prove that it enjoys cut elimination. Although the authors demonstrate the usefulness of
logic in reasoning about the distribution of resources, they do not have a corresponding
model.

The proofs-as-terms and propositions-as-typegadigm has also been used in [37,
38, 21]. In [37], the logic studied is an intuitionistic modal logic derived frt8$8, and
the modalities have a spatial flavour. Specifically, Kripke states are taken to be nodes on
a network. The connectivé réfelects the mobility of portable code, amdeflects the
address of a fixed resources. The work in [38] extends [37, 16, 17] to a lambda calculus
for classical hybridS5with network-wide continuations, which arise naturally from the
underlying classical logic. These continuations create a new relationship between the two
modalities and give a computational interpretation of theorems of classical (§/®rikh
[21], the relationship modal logics and type systems for Grid computing is investigated.
The objects with typd_ate interpreted as jobs that may be injected into the Gird and run
anywhere. The main derence from [38, 37, 16, 17] is that the underlying logic is based
on S4rather tharS5 Whereas [38, 37, 16, 17] assume all nodes are connected to all other



modalities built from pure names. The original idea of internalising the model into formulae

was proposed in [27, 28], and has been further investigated in [1, 2, 4, 5, 6]. This work has
been mostly carried out in the classical setting. More recently, classical hybrid logic is

combined with linear temporal logic in [25], and the logic accounts for both temporal and

spatial aspects. Intuitionistic versions of hybrid logics were investigated in [7, 16, 17].

There are several intuitionistic modal logics in the literature, and [35] is a good source
on them. The modalities in [35] have a temporal flavour, and the spatial interpretation
was not recognised then. In [35], for example, the accessibility relation expresses the next
step of a computation. The work in [7] extends the modal systems in [35], and creates
hybrid versions of the modal systems by introduanagninals a new kind of propositional
symbols projecting semantics into the logic. A natural deduction system for these hybrid
systems along with a normalisation result is also given in [7]. A Kripke semantics along
with a proof of soundness and completeness is also introduced.

The extension we gave to the logic in [16, 17] is a hybrid version of the intuitionistic
modal systemiS5[23, 29, 35]. The modality @ internalises the model in the logic. In the
modal systemS5 first introduced in [29], the accessibility relation among places is total.
The main diiefence in the logic presented in [7] and the logic in [16, 17] is that names in
[16, 17] only occur in the modality @

From the point of view of semantics, Kripke semantics were first introduced in [19]
for intuitionistic first-order logic. Kripke semantics for intuitionistic modal systems were
developed in [11, 23, 26, 34, 35]. Birelational models for intuitionistic modal logic were
introduced independently in [11, 34, 26]. They are in general useful to prove the finite
model property as demonstrated in [24, 35]. The finite model property fails for Kripke
semantics [35, 24], and an example for this was adapted in this paper.

Some other examples of work on logics for resources are separation logics [3l],and
the logic of bunched implications [22, 31, 32]. Separation logic is an extension of Hoare
logic that permits reasoning about low-level imperative programs with shared mutable data
structure. Formulae are extended by introducing a ‘separating conjunction’ whose subfor-
mulae are meant to hold for disjoint parts of the system, thus enabling a concise and flexible
description of structures with controlled sharingl is the theoretical base to separation
logics. While separation logic is based on particular storage mdsletiescribe resources
more generally and its model theory is inspired by a primitive of resource composition.

The logic of bunched implications is a substructural system which freely combines
propositional intuitionistic logic and the multiplicative fragment of propositional linear
logic. Assertions are not in a sequence, but rathdsunches contexts with two com-
bining operations, one reflected in the logic the intuitionistic conjunction and the other by
the multiplicative one. In [22, 31, 32], the authors give a Kripke model based on monoids.
The formulae of the logic are the resources, and are interpreted as elements of the monoid.
The monoidal operation is reflected in the logic by the multiplicative connective. The focus
of this work is the sharing of resources, and not their distribution.

Bl-Loc, presented in [3], extends the logic of bunched implication by introducing a
modality for locations. Its models aresource treesnode-labelled trees in which nodes
contain resources belonging to a monoid. Every label gives rise to a corresponding logical
modality which precisely indicates the location where a formula holds. Alth&igtoc
o[ers a separation operator to express properties holdind émelit parts of the system, its



the asynchronous-calculus [20]. The logic is developed in classical settings and lacks
a notion of resources. The main aim of spatial logic is to describe the behaviour and the
spatial structure of concurrent systems. The logic is modal in space and in time, and a
formula describes a property of a particular part of a concurrent system at a particular time.

Locations can be added to Spatial Logic along the lines of [9] which gives a modal
logic based on Ambient Calculus [10]. Ambients are intended as locations, and there is
a modalitym [_] for every ambient namen which specifies the location where a property
holds. These spatial modalities have an intensional flavour and ‘hybridise’ spatial logics as
the modality @ ‘hybridises’IS5in the current paper. However, the locations in Ambient
logic unlike this paper have an intensional hierarchy which is reflected in the logic by
having nested formulae lika [n [ O]

7 Conclusions and Future Work

We studied the hybrid modal logic presented in [16, 17], and extended the logic with dis-
junctive connectives. Formulae in the logic contain names, also called places. The logic is
useful to reason about placement of resources in a distributed system. We gave two sound
and complete semantics for the logic.

In one semantics, we interpreted the judgements of the logic over Kripke-style models
[19]. Typically, Kripke models [19] consist of partially ordered Kripke states. In our case,
each Kripke state has a set of places, ar@mént places satisfy @edent formulae. Larger
Kripke states have larger sets of places, and the satisfaction of atoms corresponds to the
placement of resources. The modalities of the logic allow formulae to be satisfied in a
named place (@), some place«) and every placel(l_IThe Kripke semantics can be seen
as an instance of hybri®5[23, 29, 7, 35].

In the second semantics, we interpreted the judgements over birelational models [11,
34, 26, 35]. Typically, birelational models have a set of partially ordered worlds. In addition
to the partial order, there is also a reachability relation amongst worlds. In order to interpret
the modality @ in the system, we also introduced a partial evaluation function on the set
of worlds. The hybrid nature of the logic presenteddiikies in the proof of soundness.

The dil[culies are addressed using a mathematical construction that creates a new model
from a given one. The set of worlds in the constructed model is the union of two sets.
One of these sets is the reachability relation, and the worlds in the second set witness the
existential and universal properties.

As in the case of intuitionistic modal systems [11, 34, 23, 26, 35], we demonstrated that
the birelational models introduced here enjoy the finite model property: a judgement is not
provable in the logic if and only if it is refutable in some finite model. The finite model
property allowed us to conclude decidability. The partiality of the evaluation function was
essential in the proof of the finite model property.

As future work, we are considering other extensions of the logic. A major limitation of
the logic presented in [16, 17] is that if a formuias validated at some named place, say
p, then the formula@p can be inferred at every other place. Similarlysdf or [§Ltan
be inferred at one place, then they can be inferred at any other place. In a large distributed
system, we may want to restrict the rights of accessing information in a place. This can be
done by adding an accessibility relation as is done in the case of other intuitionistic modal
systems [35, 7]. We are currently investigating if the proof of the finite model property
can be adapted to the hybrid versions of other intuitionistic modal systems. We are also
investigating the computational interpretation of these extensions. This would result in
extensions ol-calculus presented in [16, 17]. We also plan to investigate adding temporal
modalities to the logic. This will help us to reason about both space and time.

From a purely logical point of view, the meta-logic used in the paper to reason about
soundness and completeness is classical. In order to obtain a full intutionistic account for
the logic, another line of investigation would be to consider categoricdbatapological
semantics for the logic. This would allow us to obtain soundness and completeness results
when the meta-logic is intuitionistic.
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