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Abstract

This paper will look at an evolutionary ap-

proach to robotics; partly at pragmatic issues,

but primarily at theoretical issues associated

with the evolutionary algorithms which are ap-

propriate. Genetic Algorithms are not suitable

in their usual form for the evolution of cogni-

tive structures, which must be in an incremental

fashion. SAGA | Species Adaptation Genetic

Algorithms | is a conceptual framework for ex-

tending GAs to variable length genotypes, where

evolution allows a species of individuals to evolve

from simple to more complex.

In the context of species evolution the metaphor

of hill-crawling as opposed to hill-climbing is in-

troduced, and appropriate mutation rates dis-

cussed. On both pragmatic and theoretical

grounds, it will be suggested that there are good

reasons for using Tournament Selection in evolu-

tionary robotics.

1 Why Evolutionary Robotics?

Subsumption-style cognitive architecture for robots

(Brooks 1986, Brooks 1991) in theory analyses indepen-

dent behaviours of a robot, and `wires them in' largely



havioural modules for arti�cial nervous systems, or arti-

�cial embryology. Beer (Beer and Gallagher 1991) used

GAs to synthesize a walking behaviour for a six-legged

agent. In a more traditional robotics context, mention

is made of an evolutionary approach in (Barhen et al.

1987).

Recently the Japanese government research laborato-

ries, ATR in Kyoto, have set up a well-funded research

group for Evolutionary Robotics in their Evolutionary

Systems department. Similar work is pursued at ETL

in Japan, and there is interest from Japanese indus-

try; Mitsubishi sponsored a symposium on Evolutionary

Robotics in March 1993. At the Simulation of Adap-

tive Behavior 1992 conference (Meyer et al. 1993) in

Hawaii, a group of papers were closely related to this

�eld. The Evolutionary Robotics Group at Sussex has

been since 1992 arti�cially evolving control systems for

mobile robots | co-evolved with sensor attributes |

for visual navigation tasks. This work started with sim-

ulations of a real physical robot, and is now using a

specialised piece of hardware allowing real vision to be

used in a robot that can have a succession of control sys-

tems rapidly and automatically evaluated in sequence

(Harvey et al. 1993, Cli�



lengths, e.g.



hood increase in numbers of mutations is monotonically

related to decrease in �tness. Figure 6 demonstrates the

e�ect of Muller's ratchet when mutation is high enough

to cause loss of information. Figure 7 sketches the ef-

fects when mutation is high enough (without bringing

Muller's ratchet into play) for some elements of the pop-

ulation to crawl down the hill far enough to reach a ridge

of high selective values. As discussed in (Eigen et al.

1988), this results under selection in a signi�cant pro-

portion of the population working their way along this

ridge, and making possible the reaching of outliers fur-

ther in Hamming-distance in that particular direction



constant �; in (Hesser and M�anner 1991) that after ear-

lier higher values should decrease exponentially towards
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members of the same distance i results in a winner i and

the loser replaced by i+ 1.

For maximumhill-crawlingwithout losing the master-

sequence (of distance 0) from the population, the long-

term fate of this master-sequence should be considered.

It can be seen that all tournaments between a 0 and a 0

result in the loss of one 0 to the population, and there

is no other way in which 0s can be gained. If all tourna-

ments are constrained to be between two di�erent indi-

viduals, then r

0

will soon reduce to one member which

will thereafter survive alone for ever. This member, the

`wild-type', will win all its tournaments and continually

replenish the 
ow of mutants down the hill away from

it. Histograms of results from populations of various

sizes run in a computer simulation is shown in �gure 10.

An equation which allows one to iteratively derive the

expected size of each class is derived in Appendix A.

If the same individual can be chosen twice for a tour-

nament, resulting in the replacement of itself by a mu-

tated copy, then the wild-type will eventually be lost

through just such an incident, and Muller's ratchet will

start to operate. However, if tournaments are between

di�erent individuals, then the wild-type will never be

lost, whatever the size of �. We thus have a selec-

tion mechanism which can move the bulk of the pop-

ulation crawling down the hill as much as is desired,

without ever encountering the error threshold of Eigen

and Schuster. The banding into multiples of � can be

broken up by alternating between two di�erent integers

for �.

But careful : : :

There is a dangerous potential 
aw in this. We are rely-

ing on the choice of winner of a tournament being 100%

reliable, and in the context of evolutionary robotics, as

discussed earlier, this may very easily not be the case. If

the reliability of choice is p < 1, then sooner or later the

wild-type will be lost and Muller's ratchet will start.

A possible counter to this will be to only mutate the

replica with probability q < 1, and otherwise leave it

unchanged. In Appendix B it is shown that this will

save the situation in an in�nite population for values of

q < (2p�1)=p, this being independent of the value of �.

For example, if p = 0:9, we should have q < 0:888 : : :.

In the case of a �nite population, q should be reduced



of repair mechanism protecting against Muller's ratchet

(Maynard Smith 1978).

With tournament selection, candidates for recombina-

tion would be the winners of two separate tournaments,

and the two o�spring, after crossover and mutation, can

replace the two losers. In general, the crossover will

produce one o�spring closer to the wild-type than the

average of the two parents' distances, and another o�-

spring further away than this average; after which mu-

tation adds its toll. This constitutes a force producing

a restorative 
ow towards the wild-type, allowing larger

mutation rates without loss of the current local opti-

mum. Simulations con�rm this.

There are



editor, Proceedings of the First European Symposium

on Arti�cial Neural Networks, ESANN'93, pages 39{

44. D facto Publishing, Brussels, 1993.

[Cli� et al. 1993b] D. T. Cli�, P. Husbands, and I. Har-

vey. Evolving visually guided robots. In J.-A.

Meyer, H. Roitblat, and S. Wilson, editors, From An-

imals to Animats 3, Proceedings of the Second Inter-

national Conference on Simulation of Adaptive Be-

haviour (SAB92), pages 374{383. MIT Press Brad-



populations, mutation frequencies and the onset of

Muller's ratchet. Journal of Theoretical Biology,

137:375{395, 1989.

[PRANCE 1991] PRANCE. Perceptive robots: Au-

tonomous navigation and cooperation through evolu-

tion. Unpublished research proposal, PRANCE con-



Setting gains equal to losses, and dividing by a, we

have

aq + 2(1� a)(1� p) = 2(1� a)p(1� q)

a(4p+ q � 2pq � 2) = 2(2p� pq � 1)

We can assume that p > 0:5, say p = 0:5+ s for positive

s. The factor on the l.h.s. of the equation, multiplying

a, then becomes (2+4s+q�q�2sq�2), which reduces

to 2s(2 � q). We know that





Figure 3: Average genotype lengths against generations; vertical bars show standard deviations. E�ects of `creeping'

and `unrestricted' increase-length genetic operators on a population with the same �tness conditions, epistasis K = 2.

Left graph, linkage with neighbouring genes. Right graph, random linkage.

Figure 4: As a species evolves through SAGA space, the search for higher �tness only takes place in a very local

search space around the current focus of the species.
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Figure 5: The opposing forces of mutation and selection on a population centred around a local optimum, where

Hamming distance from master sequence is directly related to �tness ranking.
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Figure 7: If the population can crawl down the hill far enough to reach a ridge of relatively high �tness, it will spread

along it, potentially reaching new hills.



* * * m = 3 mutns
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Figure 11: Similar simulations to those shown in previous �gure, except that genotypes are of length 100.



Figure 14: Number of tournaments for a population centred at one `hill-top' to have a �rst member reach a nearby

hill-top. Rate speci�ed is the average number of mutations per genotype. Recombination has been used.
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