


de�nite Hessian. Nonetheless they 
an be applied to minimize general fun
tions.
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Mini-

mization of a quadrati
 fun
tion



Estimating the 
urvature f

00

(0) by di�eren
ing �rst derivatives gives

f

00

(0) � s

n

�

rE(





The algorithm

The algorithm 
an be stated as follows:

0. 
hoose weight ve
tor w

0

, s
alars �

0

> 0, �

0

> 0, � � 0 and initialize sear
h dire
tion:

g

0

= rE(w

0

)

s

0

= �g

0

su

ess = true; S = 0; n = 0

1. if su

ess = true 
al
ulate �rst and se
ond order dire
tional derivatives:

�

n

= s

n

� g

n

(dire
tional gradient)

if �

n

� 0, set s

n

= �g

n

; �

n

= s

n

� g

n

; S = 0

�

n

= s

n

� s

n

; �

n

=

�

n

p

�

n




n

= s

n

�

rE(w

n

+ �

n

s

n

)�rE(w

n

)

�

n

(dire
tional 
urvature)

2. in
rease the working 
urvature: Æ

n

= 


n

+ �

n

�

n

3. if Æ

n

� 0 make Æ

n

positive and in
rease �

n

:

Æ

n

= �

n

�

n

�

n

= �

n

�




n

�

n

4. 
al
ulate step size and adapt �:

�

n

= �

�

n

Æ

n

�

n+1

= �

n

�

�

n

�

n

�

�

5. 
al
ulate the 
omparison ratio:

�

n

=

2[E(w

n

+ �

n

s

n

)�E(w

n

)℄

�

n

�

n

su

ess = �

n

� 0
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6. if �

n

< 0:25, set �

n+1

= minf�

n

+

Æ

n

(1� �

n

)

�

n

; �

max

g

if �

n

> 0:75, set �

n+1

= max f�

n

=2; �

min

g

otherwise, set �

n+1

= �

n

7. if su

ess = true then adjust weights:

w

n+1

= w

n

+ �

n

s

n

g

n+1

= rE(w

n+1

)

S = S + 1

else leave weights un
hanged:

w

n+1

= w

n

g

n+1

= g

n

8. 
hoose new sear
h dire
tion:

if S = S

max

restart algorithm in dire
tion of steepest des
ent:

s

n+1

= �g

n+1

su

ess = true; S = 0

else

if su

ess = true 
reate new 
onjugate dire
tion:

�

n

=

(g

n

� g

n+1

) � g

n+1

�

n

s

n+1

= �g

n+1

+ �

n

s

n

else use 
urrent dire
tion again:

s

n+1

= s

n

�

n+1

= �

n

; �

n+1

= �

n

; �

n+1

= �

n

; 


n+1

= 


n

9. if kg

n+1

k < � return w

n+1

as desired minimum, else go to 1 with n = n+ 1.
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Notes on the algorithm

0. �

0

= 10

�3

is satisfa
tory though not 
riti
al if � > 0. If a non-zero value of � is


hosen then � = 0:05 or � = 0:1 are re
ommended. The initial value of � is not


riti
al though �

0

= 1 is a natural 
hoi
e. The algorithm starts in the dire
tion of

steepest des
ent.

1. Apart from the initial 
y
le, this step is only exe
uted if the last 
y
le su

eeded in

error redu
tion. Otherwise no 
hange in the weight ve
tor has been made and this

information is already known. Neither the Hestenes-Stiefel formula nor the Polak-

Ribi�ere formula guarantees that s

n

is a des
ent dire
tion, though usually it is. If

�

n

� 0, a restart is made in the dire
tion of steepest des
ent for whi
h �

n

= �g

n

�g

n

is negative, otherwise the algorithm would have terminated at the last step of the

previous 
y
le, assuming the two-norm is used.

3. After this step, Æ

n

= 


n

+ �

n

�

n

as before, but with the new value of �

n

.

5. Remember that �

n

< 0. The 
hoi
e of �

n

� 0 rather than �

n

> 0 is deliberate.

It safeguards against the algorithm getting stu
k owing to limited 
oating-point

pre
ision. An alternative is to restart in the dire
tion of steepest des
ent after a

given number, 10 say, of 
onse
utive failures.

6. �

n

must stay in the range 0 < �

n

< 1, otherwise no further res
aling is possible.

�

min

and �

max


an be of the order of the smallest and largest



fun
tion evaluationE(w

n

+�

n

s

n

) though it is worth performing the full gradient evaluation

rE(w

n

+ �

n

s

n

) at this stage. If an error redu
tion results, w

n

+ �

n

s

n

will be
ome the

new weight ve
tor w

n+1

in step 7 and rE(w

n+1

) will then already be known. If no error

redu
tion o

urs, the extra 
omputation will have been wasted. On the other hand, if

an error redu
tion does o

ur, the work involved in 
al
ulating only the fun
tion value

E(w

n

+�

n

s

n

) in step 5 will have to be redone. Assuming that su

esses are more 
ommon

than failures, it is better on average to 
al
ulate the gradient in step 5. Note that at the

end of the 
y
le both E(w

n+1

) and rE(w

n+1

) are known.

All other signi�
ant 
al
ulations in a 
y
le are inner produ
ts. Ea
h requires N mul-

tipli
ations and additions, where N is the number of weights. This is 
omparable to a

forward pass of a single pattern. If P � 1, where P is the number of patterns in a bat
h,

the 
ost of the inner produ
t 
al
ulations is not signi�
ant.
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