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Abstract

We present results from the concurrent evolution of visual sensing morpholo-

gies and sensory-motor controller-networks for visually guided robots. In this paper

we analyse two (of many) networks which result from using incremental evolution

with variable-length genotypes. The two networks come from separate populations,

evolved using a common�tness function. The observable behaviours of the two robots

are very similar, and close to the optimal behaviour. However, the underlying sensing

morphologies and sensory-motor controllers are strikingly di�erent. This is a case of

convergent evolution at the behavioural level, coupled with divergent evolution at

the morphological level.

The action of the evolved networks is described. We discuss the process of

analysing evolved arti�cial networks, a process which bears many similarities to

analysing biological nervous systems in the �eld of neuroethology.

1 Introduction

As part of our ongoing work in using genetic algorithms to develop `neural' networks

which act as controllers for visually guided robots, we have analysed the �nal evolved

networks in order to identify how they work. This is an essential step in moving away

from the treatment of arti�cially evolved neural networks as magical black boxes.

The mathematics of our particular style of network are such that it would be di�-

cult or impossible to derive closed-form equations describing the action of the networks.
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Instead, we analyse our networks using techniques analogous to those used in the study

of biological sensory-motor neural systems. In trying to understand how our arti�cially

evolved networks generate behaviours in the robot, we are performing a task directly

analogous to the task faced by biological scientists in the �eld of neuroethology. (Neu-

roethology is the study of the neural mechanisms underlying the generation of a creature's

behaviour; see e.g. [7].) For further details of the link between neuroethology and arti�cial

neural network research, see [8, 2].

We view the networks we evolve as continuous dynamical systems, rather than as

computational devices transforming between representations: inputs to the system might

perturb the trajectory of the network in state space, so it enters a di�erent state which
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For example, the transfer functions used in our model neurons are all nonlinear with discontinuities

in the �rst derivative, and non-Gaussian noise is introduced at a number of points in the sensory-motor

system.
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might be interpreted by an external observer as a new behaviour. We �nd this perspective

less encumbering than the traditional computational perspective, and also less amenable

to the use of potentially misleading intentional language (see e.g. [3, 19, 17] for further

discussion of the bene�ts of adopting a dynamical systems perspective).

Most of this paper deals with analysing two networks from separate populations, each

evolved to perform the same task. We demonstrate that although the �nal observed

behaviour from the two networks is very similar, the underlying mechanisms are remark-

ably distinct: the two populations converged at the behavioural level, while maintaining

distinct sensory-motor morphologies.

The primary focus of this paper is on analysing networks resulting from the evolution-

ary processes.





The rear wheel is a large ball-bearing freewheel castor. The robot is equipped with tactile

sensors giving a six-bit input vector: it has four radially oriented binary `whiskers', and

binary `bumper-bars' at front and rear. For illustration, see [11]. The simulated robots

are accurate models of such a vehicle, with the addition of visual sensors.

While our early tactile-only work involved the robot roving around cluttered o�ce-like

environments, all the visually-guided tasks have been set in a closed circular arena. The

arena has black walls, while the 
oor and ceiling are white. There are no obstacles: the

arena contains only the robot.

The visual input from each of the robot's photoreceptors at any particular moment in

time depends on the robot's visual morphology, and the position and orientation of the

robot in the arena. Essentially, the population of robots has to evolve to correlate the

visual input with its position in the world, so as to satisfy whatever �tness evaluation

we impose on the robot's behaviours. As was demonstrated in [11], visual guidance

emerges without explicit reference to vision in the evaluation process. In the early stages

of evolution, the tactile sensors can be useful in helping correlate visual input with the

robot's position. However, as will be demonstrated below, later generations typically

tend to rely only on visual information.

2.3 Networks and the `Neuron' Model

The controller networks are continuous dynamical systems, built from model `neurons'

(i.e. processing units), which can have asymmetric and recurrent connectivities. Acti-

vation values (all real numbers in the range [0; 1]) are transmitted between units along

the connections, all of which have a weight of one, and impose a unit time delay in

transmission. Fully asynchronous processing is simulated by �ne-time-slice approxima-

tion techniques with random variation in time-cycling on each unit to counter periodic

e�ects.

The neuron model has separate channels for excitation and inhibition. A schematic

of the operations for one unit is shown





The initial random genotypes are created to encode for networks with all the necessary

input and output units, and either one or two hidden units. Because we use Harvey's







Figure 4: Record of observables and activity levels for the activity illustrated in Figure 2. Horizontal

axis is time. From top: robot's velocity; robot's orientation; visual input to left photoreceptor; visual

input to right photoreceptor; output of left wheel; output of right wheel; activity levels in the control

network units 0 to 14.

unit) is now acting as a second-order `interneuron'.
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There follows a short explanation of the action of the network, with reference to

Figures 6 to 8. All units initially have zero





Figure 13: Typical behaviour of the C2 controller, with noise. Display format as for Figure 2. The

robot starts near the edge of the arena, moves to the centre, and then spins on the spot. As can be seen,

the C2 controller drives the robot in reverse (backwards).



Figure 16: Record of observables and activity levels for the (with-noise) activity illustrated in Figure 13.

Examination of the activity traces (both with and without noise) allow the analysis

of C2 to be taken further. First, unit 6 provides only veto outputs to other units, and

it is clear from Figures 16 and 18 that the total input to unit 6 is never su�ciently high

to go over the veto-output threshold, so unit 6 is e�ectively redundant in the context

of producing the behaviours illustrated in the �gures. For this reason, unit 6 can be

eliminated and the C2 network re-drawn accordingly: see Figure 19. This implies that C2

is employing `monocular' vision, using just the input from the right-hand photoreceptor

to perform visual guidance.

To further elucidate how C2 operates, one more analysis technique can be used to

improve the legibility of the network diagrams: it can be seen in Figure 19 that some

units recieve activation from only one unit, pass that activation through the excitation
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Figure 17: Typical noise-free behaviour of the C2 controller. Display format as for Figure 2.

of one and impose a unit time delay: the use of distributor units allows for \virtual

connections" to evolve which have di�erent weights or delays. Similarly, if there are N

excitatory links from unit n to unit m, then they can together be considered as a single

\virtual connection" with weight N and unity delay: for example, in Figure 19, the two

connections from unit 10 to unit 1 form a virtual connection of weight 2.0.

Thus, distributor units and multiple connections between units can be eliminated

from the network diagrams, and the network re-drawn with the various weights indicated:

the �nal \weighted" version of C2 is shown in Figure 20. The \weighted" forms of the

networks are useful analytic tools: from Figure 20 it is fairly clear that the operation of C2

depends crucially on unit 1: if there is su�cient visual input to the right photoreceptor

(through unit 7), unit 1 inhibits unit 15, and the robot enters a low-radius turn: the

turn is only sustainable when the robot is within the central isoluminance zone; at other

locations the turn will reduce visual input, thereby preventing continued inhibition of

unit 15, so the robot's path to the centre is a straight line punctuated by brief bursts of

low-radius turns as unit 15 is intermittently inhibited.

From the above analysis, it is clear that while C2 produces similar observable be-

haviour to C1, the internal mechanisms responsible for generating these behaviours op-

erate on markedly di�erent principles. This is discussed further below.

3.3 Discussion

The primary factor of note in comparing controllers C1 and C2 is that, although they were

evolved separately, they had indistinguishable initial populations (i.e. both populations
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Figure 18:



the same task. This is an accordance with the principles underlying the saga genetic

algorithm we used [14].

Such networks exhibited graceful degradation in the presence of increased noise. Dur-

ing evolution, an internal noise distribution of �0:1 was used; we found the robots could

still approach the centre with noise distributions as high as (in the case of C1) �0:8: see

[10].

In almost all of the networks we have analysed, there has been no clearly identi�able

structure. C2 is a clear example. Nevertheless, we �nd the structure of C1 intriguing:

the role of unit 2, which can disable unit 12 (and, in doing so, also disables unit 14) seems

vaguely reminiscent of a two-layer subsumption architecture, in that units 12 and 14 are

responsible for generating the `spin' behaviour; a behaviour `subsumed' by the approach-

ing behaviour. See [4, 5] for details of subsumption architectures, and e.g. [12] for an

example of a two-layer subsumption visually guided robot. Clearly, it is too early to

make strong claims, but we suspect that it is not infeasible that subsumption-style ar-

chitectures could evolve within our scheme: because we use truly incremental evolution,

it is possible that mechanisms generating elementary low-level behaviours evolve �rst,

with structures responsible for generating higher-level behaviours coming later. Such

an evolutionary trajectory would make sense, given the need for satisfying intermediate

viability (i.e. good controllers have to be built from minor changes to earlier slightly-

less-good controllers { there is no opportunity for a total re-design from scratch). This

may go some way toward explaining why subsumption-style controllers (i.e. behavioural

decomposition) have been identi�ed in biological creatures [1, 9].

It is important to note that both the C1 and C2 controllers were evolved in a �xed-

size arena, and hence are dependent on the ratio of the height of the arena's walls to

the diameter of the 
oor. It is this ratio, combined with the controller's particular

visual morphology, that determines the brightness values in the central isoluminance zone

discussed in Section 3.1. Work is currently underway on varying the arena dimensions on

each evaluation, in order to evolve truly general-purpose controllers which should operate

in any circular arena.

3.4 Conclusion

We have examined two controller networks evolved using incremental genetic algorithms,

and found a form of speciation, in that two controllers evolved in separate populations pro-

duce convergent behaviours while employing divergent mechanisms for generating those

behaviours. Nevertheless, both controllers perform in a close-to-optimal manner, and

are robust in the presence of noise. While both the robot's world and behaviours are

relatively trivial, we can see no reason why our methods, suitable extended beyond the

speci�cs described here, should not prove successful in increasingly complex domains.

The important achievement in this paper is not that we got a simulated robot to

perform a particular visually guided behaviour, nor that the behaviours were generated

by evolved neural networks. What matters is that we haven't treated the evolved networks

as magic black boxes. We speci�ed what the robots should do, but not how the controllers

work. Nevertheless, analysis lets us know what's going on inside the box. And, for the

record, we don't think that it's computation (at least, not in the conventional sense).
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