
To appear in Proceedings of the First Westminster Conference on Professional Awareness in Software Engineering,
Royal Society, London, 1-2 February 1996.

COMMUNICATION PROBLEMS IN REQUIREMENTS

ENGINEERING: A FIELD STUDY

By Amer Al-Rawas
1
 and Steve Easterbrook

2

1
School of Cognitive and Computing Sciences

University of Sussex,
Falmer, Brighton, BN1 9QH, UK.
E-mail: ameral@cogs.susx.ac.uk

2
NASA/WVU Software Research Lab

NASA IV&V Facility,
100 University Dr, Fairmont, WV 26554, USA.
E-mail: steve@atlantis.ivv.nasa.gov

Abstract

The requirements engineering phase of software development projects is characterised by the
intensity and importance of communication activities. During this phase, the various stakeholders
must be able to communicate their requirements to the analysts, and the analysts need to be able to
communicate the specifications they generate back to the stakeholders for validation. This paper
describes a field investigation into the problems of communication between disparate communities
involved in the requirements specification activities. The results of this study are discussed in terms
of their relation to three major communication barriers : 1) ineffectiveness of the current
communication channels; 2) restrictions on expressiveness imposed by notations; and 3) social and
organisational barriers. The results confirm that organisational and social issues have great

- 2 -

There have been a number of field studies into software engineering in general and
requirements engineering in particular [Curtis 1990]. Our study differs from previous field
investigations in that it focuses on the communication characteristics of the requirements
engineering process. Moreover, our investigation not only utilised the experience of software
engineering practitioner, it also reflects the views and experiences of endusers based on their recent
software procurement projects. The domain of our study was the requirements engineering phase
of fully customised software systems development projects. The field study was conducted in two
stages using two data gathering methods (interviews and questionnaires).

The research method is described in section 2. Section 3 describes the communication
difficulties and their causes. These include difficulties caused by the nature of software engineering
notations and methodologies as well as communication barriers caused by social and organisational
factors. Each sub-section is supported by results from this field study with reference to the relevant
literature. Section 4 concludes the paper with a discussion of these findings and their implications
on professional software engineering, outlining some future research questions.

2. Research Method

A combination of learning, data gathering and analysis techniques were applied to investigate the
communication problems, their causes and consequences. The two principle sources of
information were the literature and the empirical study. The ever growing literature on software
engineering in general and requirements engineering in particular was surveyed to gather
information about the software development problems, especially those that occur in the early
phases, and the sort of tools and techniques that were or are being developed to overcome these
problems. A cross section of social science and computer supported co-operative work (CSCW)
literature was also surveyed to help in the analysis of the empirical results and reasoning about the
possible causes and consequences of communication difficulties.

2.1 Empirical Work

The aim of the empirical part of this research is to provide material for hypotheses, to aid the
identification and reasoning about the communication difficulties and their causes and
consequences. Although there are inherent complexities in combining qualitative and quantitative
methods, it was decided that such an empirical base was essential to avoid unsupported assertions.

The empirical work was carried out in two stages. The first, consisted of informal interviews
and observations to establish some knowledge about practices and methodologies of both
developers and their customers. These interviews concentrated mainly on the communication
channels between agents participating in any software development project, as well as on the
problems that can be attributed to the ineffectiveness of those communication channels. Other
management and technical issues were also discussed. Most of these interviews were taped for
further analysis and reference. The second stage of our empirical work was based on two
questionnaires; one for clients (or endusers of the software) and one for the software developers.
These questionnaires were designed to get a quantitative evaluation for the various aspects of the
communication activities during RE.

To ensure representative coverage our subjects included users and developers of various levels
of experiences, qualifications and backgrounds. The users included some who had just had a
software system installed and some with an ongoing project. Their experience with computers
ranged from absolute computer illiteracy to qualified experts. The developers were all involved in
either developing a new software system or maintaining an existing one. Some were also involved
in the provision of hardware systems. Their working area covered all aspects of software
development from requirements gathering through to maintenance, as well as project management.

In order to utilise the experience of software engineering practitioners as well as the software
system procurement experience of their clients, it was necessary to produce two separate

- 3 -

questionnaires; developers questionnaire and clients questionnaire. The former concentrate on the
collective experience of practitioners involved in the requirements specification and interpretation.
The latter was targeted at endusers who use a new customised software system regardless of their
involvement in its development. Another reason for separating the two questionnaires was the
technical gap between the two main communities of developers and endusers. Table 1 shows the
interviews sample and the questionnaires responses. Targeting the questionnaires was very
difficult. We relied on personal contacts plus some commercial directories. We asked the recipients
of the questionnaires to pass them to the appropriate people. Questionnaires were sent to over 50
companies in the UK and Oman. Responses represent a cross-section of the companies that were
targeted.

Developers

(software practitioners)

Clients

(endusers of the software)

Interviews Sample
Size

6 5

Questionnaires
Responses

37 32

(18 Participating &
14 Non-participating)

- 5 -

It is often the analyst's responsibility to choose the notations that will best describe the system
for each interest group. Thereafter, the chosen notations are used to explain the system differently
to each group. In doing so, the analyst combines the notations with other explanation techniques,
to make notations easier to read and understand. The choice of the explanatory tools utilised by the
analysts and the extent to which they are needed depend on the notation used and the audience’s
familiarity with the notation.

Typically, two types of knowledge are used as a high level framework to anchor detailed
knowledge: the control flow information, which might be represented by specialised notations such
as pseudo code and flowcharts, and data structure information, which might be represented using
diagrams or a textual description [Shneiderman, 1982]. Some software programs such as the
traditional numerical analysis systems have complex control structure with relatively simple data
structures. On the other hand, traditional commercial applications have complex data structures
with relatively simple control flow. Sheppard, Kruesi and Curtis [1981], conducted an experiment
to compare comprehension with nine forms of program description including natural language, a
program design language, flowcharts and hierarchical diagrams. They found different results for
different types of questions, but no particular style appeared to dominate. However, in their study
of program coding from the nine notations, Sheppard and Kruesi [1981], found that the program
design language and the flowcharts diagrams were more helpful than natural language descriptions.

Regardless of the chosen notations, most users express their requirements in natural language.
Then it is the job of the analyst to translate requirements statements into some kind of
representational objects in a domain model. Once the requirements are modelled, they are presented
to endusers for validation. At this stage the analysts are faced with another communication problem
when endusers are not familiar with the notations used to model their requirements. On the other
hand, when analysts, under pressure to keep up with the project schedule, pass raw natural
language requirements to programmers, then time is wasted in trying to interpret them. A
programmer we interviewed during our empirical study complained that he often has to read large
amounts of text in order to understand a single requirement, which could have been represented
very concisely using a diagram or a formal notation. In one case he had to read over a page of text
to understand the requirements for a screen layout for a particular database form. This, he said,
could have been represented more accurately by drawing a diagram which indicate the required
dimensions of each section of the screen.

When asked whether their clients find the notations they use readable, only 4 developers (14%
of 35 developers who answered this question) said that their notations are readable and
understandable to endusers, and 31 developers (86%) said that their customers would normally
need additional explanation in order to understand the notations in which requirements are
specified. In order to examine the ways in which this additional information is provided, we asked
those who provided additional information about the methods they use. Figure 2 shows the results.

We can see from figure 2 that almost half of the respondents (15 out of 31) said that they
‘always’ annotate the notations with natural language. Around 40% (12) also said they often use
this method, around 10% (3) said they seldom use it and only one responded saying they never use
this method. This makes ‘annotating the notations with natural language’ the most popular method
for making the requirements representations readable to endusers. The second most popular
method is providing face-to-face explanation of the notations. However, around a third (10) of the
respondents said that they ‘never’ go out of their way to choose a notation that is readable to their
clients as a practice that aims to aid the communication process. We can also see from figure 2 that
for every method, at least half the respondents use them ‘always’ or ‘often’. This suggests that
most practitioners usually use one or more of theses methods. The choice of the explanatory
method utilised by the practitioner depends on the notation used and the clients’ familiarity with the
notation.

- 7 -

How do you choose the clients representatives for the requirements committee?

By

recommendations

from client

The individual's

domain knowledge

The individual's

computer

knowledge

The individual's

position or

authority

0%

20%

40%

60%

80%

100%

Never

Seldom

Often

Always

authorities

Figure 3: The basis for choosing client representatives for requirements committees.

We can see from the above results that software practitioners depend heavily on the client
authorities in selecting the requirements committee members to represent the client organisation.
Ideally, ‘domain knowledge’ would be the most important quality on which software practitioners
should base the choice of members. However when control is given to the client’s managers, the
choices can be based on a number of factors, many of which have more to do with other
commercial interests of the clients’ business than with the software project. To confirm this we
asked enduser who were selected to participate in the requirements specification process to indicate
why, in their opinion, they were chosen. We also asked those who did not participate to indicate
why they were not chosen. Figure 4 shows a shocking similarity between the responses to these
two questions.

Why do you think you were not chosen to
participate?

Limited

domain

knowledge 23%

Lack of

authoritative

position 23%Lack of

computer

experience

23%

Work nature

31%

Why do you think you were chosen to
participate?

Domain

knowledge 20%

Position of

authority 23%

Computer

experience

23%

Work nature

34%

- 8 -

smooth running of the clients organisation is given greater priority than the successful outcome of
the software development project.

Did/does working on the software project interfere with your other duties?

- 9 -

How do you establish traceability and responsibility for requirements?

- 10 -

existing requirements. This is particularly problematic, because by this time the analysts may have
reduced, or even halted, contact with the end-users of this software and may even have started
working on a new project, while their programmers get on with later phases of this project. Figure
7 presents the links that practitioners use in order to establish requirements traceability to the
requirements sources.

We can see from the above results that most analysts link the requirements only very generally
to user groups and departments, which means that traceability is not direct. Only 15% linked the
requirements to their individual sources by name, which means that those source can be traced
directly if necessary. The link to job titles might sound like a good idea, but it does not work in
dynamic organisations where people move between jobs and even move between organisations.

There are growing numbers of specialised tools that support requirements traceability, but
their use is not widespread. Requirements traceability problems are still cited by practitioners who
do not use such tools [Gotel and Finkelstein 1994]. In fact, none of the practitioners we
interviewed used requirements traceability specialised tools, and those who used the more general
CASE tools were not able to see any major improvements in requirements traceability. This is due
to the constraints imposed by many of the CASE tools, the time and effort put into following theirstrict methodologies, and their limited support for the early stages of requirements specigb(2(
oliit punts Tc
1.0512 Td
Rs spealearly isign icis orga prorootheirovysts link the requirements spec Mpose isignTm
(- 10 7)Tj
-0.039 Tc
-22 -12 icis orgainvolvurce d facfs even movcompe4 Td
(existing require icis or takobs b titoolsbe15% linked ted)'
-.063 Tc
b ortlelu spe,ainandad idetwarbs, t accept wereIn fd su. Thienteind sms spee fru meae lat icis orgigb(2(7ed)'
1.7506 Tc
dologie rs spealearbehiologiemlitycrubilied support on with later phers of thisd jolopng rigb(2(33d)'
1.3063 Tc
. This is par who the enanthoith l. How jorroblematicer pherand tic orgaer pherc
(job spealnisati8ure)'
08383 Tc
s of thisengineer Td
c
(strict metodolooolic orgampose isign rs spealeargd tn409rs u wiOurigb(2(39d)'
1.3918 Td
 be
0 ic orgadur Td
 Tc
0 Tw
equhowose wd toomisd jolopprac2.0 ofuvery keeptoomiskioloofigb(2(2d)'
1.2006 Tc
uirements trad supporrs spealearbehiolooomiser pherfeatojesirovystslelu speacea681trrs huse hanot wor10we)'
-0.022rs spealearbehiologieve iginlie37 Tw(existing reqigb(236ure)'0 012 4BT
/27.0683.6-12 Td
5. Discuss or doloConclus orgigbwor105re)'0 0 cm BT
/R8.068 8 Td
0.712 Tw
(are growser pitfversirovyrynto foampt s ti09 ivuraticer jes-0.1 osecommunnts spe channl aanisati21e)Tj
0.068 T2106 Tc
On fact, nodangpracilised teanotcommunntracTc
0 nobove ntosirovystslb titact, ns, ow soack
(tonn be t23o)Tj
02941 Tc
assumpn orgaceabilityeceabiliparticularly pers ge In-cTc
0a9 ivurcommunnts spe,do notagigbwor11ed)'
-0.026uirements spec2.cuand depar712 tr712 their olimitunntrafoacheckhich meats la useth acTc
0 nobose whmigb(2307)Tj
3 have)Tc
as wh acTc
n u wiMcDermid [nke3] pohe coru ma fonnaand lieticularafoa2.0, contacnisati0we)'
-ti23e)Tc
communnts spe actabto t1trc
(cepts,irovysats link the requirements spes “2.cuand parad ideilised be t22ho)Tj
02562 -12 Td that motoolu titidewh aich meatsticularaow usesaid E toolu titwho b titwant”quirenisati37e)'
-t373e)Tc
u(certthe metoich mMcDermid iscrib osticpag ons soft abippard teanotexchang factind sms spets sour12he)'
-0.031Robinaor doloBannor [nke1]raticSE toerm “Oforct mclieDrift”afoa2iscrib pherchang frovme, 0 Tw
figbwor103o
abto t1troermtod(7 pry Tw
(passintsven movditi0rnd pcommunntieaanisati0ns.)'
0.071 Tc
220012 Td
In phasesapprCASooolose wd t2.cuand d Tw
(arpo susubtoitut fd sucTc
0 prapealrcommunnts spe.linked t5y)Tj
0.024 Tc
-22 468 Td
0.i(CASrd -0.eab spec pherinh0rnd pjes-0.1 orgaer pheravail wereoolic org. WprojeASrdp nobilte15% linked ed)'
-.6018 Td
rol factmee4 Tdsdo notage isign re Tw
eqrovcis ifynto ambprontiea dolojesolvnto c
(fl.1 sirovystnisati8ure)'
08440.026uirements spec2.cuand depaerfetooe resulrhose sourdIn ffoampt seae lt2.cuand d ffortasulrhity to t7e)'
-0.031 ti09 ivurme, whactcommunnts spe. A.935 snto aolone of clieticularaiequirfiol-ru mulrho fru meaenisati1ure
strequipaerc t accommodat fd sufollowinatio7e

- 12 -

Sheppard, S. B. and Kruesi, E. (1981). The effects of symbology and spatial arrangement of
software specifications in a coding task., Proc. Trends and Applications: Advances in Software
Technology. Held at NBS, Gaithersburg, MD, available from IEEE,1981, pp.7-13.

Sheppard, S. B., Kruesi, E. and Curtis, B. (1981). The effect of symbology and spatial
arrangement on the comprehension of software specifications, Proc. 5th Int. Conference on
Software Engineering, San Diego, CA, available from IEEE,1981, pp.207-214.

Shneiderman, B. (1982). Control Flow and Data Flow Structures Documentation: Two
Experiments, In Ledgard, H. (Eds), Technical Notes: Human Aspects of Computing,
Communications of the ACM 25 (1), pp.55-63.

Walz, D., Elam, J. and Curtis, B. (1993).Inside a software design team : Knowledge acquisition,
sharing, and integration., Communications of the ACM 36(10), pp.63-77.

