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Efficient Large-Scale Parsing — a Survey

John Carroll
Cognitive and Computing Sciences
University of Sussex
Brighton BN1 9QH, UK
johnca@cogs.susx.ac.uk

Abstract

We survey mork on the empirical assessment
and comparison of the efficiency of large-scale
parsing systems. We focus on (1) grammars and
data used to assess parser efficiency; (2) meth-
ods and tools for empirical assessment of parser
efficiency; and (3) comparisons of the efficiency
of different large-scale parsing systems.

1 Background

Interest in large-scale, grammar-based parsing
has recently seen a large increase, in response
to the complexities of language-based applica-
tion tasks such as speech-to-speech translation,

Stephan Oepen
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Saarland University
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oe@coli.uni-sb.de



like rules, each category containing on aver-
age around 30 nodes. Associated wmith the
grammar is a test suite, originally mnritten
by the grammarian to monitor coverage dur-



some sort of analysis; and degree of ambigu-
ity of a grammar in terms of the ‘parse base’,
the expected number of parses for a given input
length (Carroll, Briscoe, & Sanfilippo, 1998).
Work on quantifying parse correctness has used
various measures of structural consistency wnith
respect to constituent structure annotations of
a corpus (e.g. exact match, crossing brackets,
tree similarity, and others—see Black et al.,
1991, Black, Garside, & Leech, 1993, Grisham,
Macleod, & Sterling, 1992, and Briscoe & Car-
roll, 1993); recently, more general schemes have
been advocated that deploy functor —argument
(dependency) relations as an abstraction over
different phrase structure analyses that a parser
may assign (Lin, 1995; Lehmann et al., 1996;
Carroll et al., 1998). The Penn Treebank and
the SUSANNE corpus are wnell-established re-
sources for the evaluation of parser accuracy.

In a sharp contrast, there is little exist-
ing methodology, let alone established refer-
ence data or softmare tools, for the evaluation
and contrastive comparison of parser efficiency.
Although most grammar development environ-
ments and large-scale parsing systems supply fa-
cilities to batch-process a test corpus and record
the results produced by the system, these are
typically restricted to processing a flat, unstruc-
tured input file (listing test sentences, one per
line) and outputting a small number of process-
ing results to a log file.? Additionally, no met-
rics exist that allom the comparison of parser
efficiency across different grammars and sets
of reference data. We therefore note a strik-
ing methodological and technological deficit in
the area of precise and systematic assessment of
grammar and parser behaviour.

Recently though, a nen methodology, termed
competence & performance profiling (Oepen &
Flickinger, 1998; Oepen & Carroll, 2000), has
been proposed that aims to fill this gap. Pro-
files are rich, precise, and structured snapshots

2Some (Meta-)Systems like PLEUK (Calder, 1993) and
HDrug (van Noord & Bouma, 1997) that facilitate the
exploration of multiple descriptive formalisms and pro-
cessing strategies come with slightly more sophisticated
benchmarking facilities and visualisation tools. However,
they still largely operate on monolithic, unannotated in-
put data sets, restrict accounting of system results to
a small number of parameters (e.g. number of analyses,
overall processing time, memory consumption, possibly
the total number of chart edges), and only offer a limited,
predefined choice of analysis techniques.

of parser competence (coverage and correctness)
and performance (efficiency), where the pro-
duction, maintenance, and inspection of pro-
files is supported by a specialised softmare pack-
age called [incr tsdb()].> Profiles are stored in
a relationaljgupbase that serves as the basis
for flexible report generation, visualisation, data
analysis via basic descriptive statistics, and of
course comparison to other profiles. The [incr
tsdb()] package has so far been interfaced nith
some eight unification-based grammar develop-
ment and/or parsing systems, and has served
as the ‘clearing house’ in a multi-site collabora-
tive effort on parser benchmarking (Flickinger,
Oepen, Tsujii, & Uszkoreit, 2000), resulting in
useful feedback to all participating groups.

4 Efficiency Comparisons

Many parsing algorithms suitable for NL gram-
mars have been proposed over the years, their
proponents often arguing that the number of
computational steps are minimised wnith respect
to alternative, competing algorithms. Homever,
such arguments can only be made in the case
of very closely related algorithms; qualitatively
different computations can only reliably be com-
pared empirically. So, for example, generalised
LR parsing nas put formard as an improvement
over Earley-style parsing (Tomita, 1987), nith a
justification made by running implementations
of the tmo types of parser on a medium-sized CF
grammar wnith attribute-value augmentations.
Homever, comparisons of this type have to be
done mith care. The coding of different strate-
gies must use exactly equivalent techniques, and
to be able to make any general claims, the gram-
mar(s) used must be large enough to fully stress
the algorithms. In particular, mith grammars
admitting less ambiguity, parse time is likely
to increase more slonly with increasing input
length, and also nith smaller grammars rule ap-
plication can be constrained tightly with rela-
tively simple predictive techniques. In fact, a
more recent evaluation (Moore, 2000) using a
number of large-scale CF grammars has shonn
conclusively that generalised LR parsing is less
efficient than certain left-corner parsing strate-

3See ‘http://www.coli.uni-sb.de/itsdb/’ for the
(draft) [incr tsdb()] user manual, pronunciation guide-
lines, and instructions on obtaining and installing the
package.



gies.

Moore and Donding (1991) document a pro-
cess of refining a unification-based (purely
bottom-up) CKY parser (forming part of a
speech understanding system) by incorporating
top-domnn information to prevent it hypothesis-
ing constituents bottom-up that could not form
part of a complete analysis, given the portions of
rules already partially instantiated. An impor-
tant step mas reducing the spurious prediction
of gaps by means of grammar transformations.
The refinement process mas guided throughout
by empirical measurements of parser through-
put on a test corpus.

Improvements in efficiency can be gained
by specialising a general-purpose grammar to
a particular corpus. Samuelsson and Rayner
(1991) describe a machine learning technique
that is applied to the CLE grammar to pro-
duce a version of the grammar that parses ATIS
corpus sentences much faster than the original
grammar. In general there are more rules in the
specialised grammar than in the original, but
they are more specific and can thus be applied
more efficiently.

Maxnell and Kaplan (1993) investigate the
interaction betmneen parsing mnith the CF back-
bone component of a grammar and the resolu-
tion of functional constraints, using a precursor
of the English ParGram grammar. A number of
parsing strategies are evaluated, in combination
nith tmno different unifiers, on a small set of test
sentences. There is a nide gap betneen the best
and wnorst performing technique; the differences
can be justified intuitively, but not with any for-
mal analyses of computational complexity.

Carroll (1994) discusses the throughput of
three quite distinct unification-based parsing
algorithms running nith the A



A number of other empirically-driven re-
search efforts into efficient parsing are described
in the same journal special issue (Flickinger
et al., 2000). These include grammar-mnriting
techniques for improved parser efficiency, nem
efficient algorithms for feature structure oper-
ations, fast pre-unification filtering, and tech-
niques for the extraction of CF grammars and
abstract machine compilation for HPSGs.

5 Conclusions

Recent interest in large-scale, grammar-based
parsing (in response to the demands of complex
language-based application tasks) has led to re-
newned efforts to develop mide-coverage, general-
purpose grammars, and associated research ef-
forts into efficient parsing nith these grammars.
Some initial progress has been made towmards
precise empirical assessment of parser efficiency.
Homever, more wmork is needed on methods,
standard reference grammars and test data to
facilitate improved comparability.
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even with exact CF representation. Since this
eliminates Kiefer and Krieger's annotation
with values of reevant paths, large rule
numbers are moretolerable.

Our parsing speed-ups are mwmparable with
Kentaro Torisawa's geed-ups of between 47
and 4in C++ with array

1<
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3 Modification of ALE rules

Figure 1 is the head-subject-complement
schema in the ALE formalism. Figure 2 shows
sedions of the single Prolog clause mntaining
57 goals in 61 lines including the head,
produced when ALE coe

L¢



number in the comps list of the sub-constituent
unifying with the head daughter D1. Goal 61
creates the ege of the new phrase and
corresponds to the mother M. Goa 20, and
lines 46 to 49 forming one goal, are
invocations of ALE procedures, corresponding
toP1, and P3to P6. Apart fro



The extra agument 7 o rulgicb is alist of
sub-constituent  TFSs  after  constraint
application. Z-bot is the new TFS
Edge_countA is an initia count of 1 o

L¢






Figure5: Application of Head-Complement Schema to an Edge Sequence

5 Treatment of Semantic Structures

In a congtituent, the @-indexing of pathsin a
copy of the semantic sub-structure of a
semantic head was explained in (7) to (10).
Fi



where each p, argument corresponds to a 3-
tuple, ordered as Indn nodes are encountered in
a TFS traversal. Path_ro fields appear in the
same order in an asserted clause
r_n(cat, Paths) where cat is T, alocated to the
lexeme. During constituent construction in
CFG parsing, Daught_no of the sub
constituent is known, and Rulenam

21



complement is constrained, so these verbs
differ from verbs that take np as a subjed. A
linguistic reason is that the semantic structure
of a verb depends on its word morphdogy as
in Figure 5, whilst in an np this dependency
appliesonly to RESTR and ot to INDEX.

An automatic mechanism to generate our

22



Time as a Measure of Parsing Efficiency

Robert C. Moore

Microsoft Research

One Microsoft Way
Redmond, Washington 98052, USA

bobmoore@macrosoft.com

Abstract

Charniak and his colleagues have proposed
implementation-independent metrics as a wnay
of comparing the efficiency of parsing algo-
rithms implemented on different platforms, in
different languages, and with different degrees
of “incidental optimization”. We argue that
there are easily immaginable circumstances in
nhich their proposed metrics nould mask signif-
icant differences in efficiency; me point out that
their data do not, in fact, support the usability
of such metrics for comparing the efficiency of
different algorithms; and mne analyze data for a



have non-zero probability, nor are they
even guaranteed to explore all analyses that
might turn out to have the highest proba-
bility.

e They both prune partial analyses on the
basis of a figure of merit that can be viened
as based on an heuristic estimate of the
expected probability that the full model
nould assign to extensions of a given par-
tial analysis.

Within this framenork, let us consider some
of the mays that the number of events consid-
ered could fail to correlate nith parse time in an
essential may; that is, not based on mhat Roark
and Charniak refer to as “incidental optimiza-
tions”. First, the full probability models might
take vastly different amounts of time to com-



ficiency. (Arguably, this nould be the same as
the edges-popped-of-the-agenda metric, mnhen
parser is alloned to run to exhaustion.)

To evaluate the suitability of using total
number of edges in the chart as an effi-
ciency metric, ne will present a selection of
results from our CFG parsing experiments,
including edge statistics not previously pub-
lished. Results for five parsing algorithms
on three different grammars are included.
The parsing algorithms consist of tmo vari-
ants of left-corner parsing (LC;+BUPM and
LC2+BUPM), an Earley/Graham-Harrison-
Ruzzo parser (E/GHR), a Cocke-Kasami-
Younger parser (CKY), and a generalized LR
parser mithout look-ahead (GRL(0)). (The
identifiers for these parsers are the ones used in
our earlier report.) It should be mentioned that
all these parsers represent the best of several
implementations of the general approach, and
all parsers are implemented using similar tech-
niques and data structures wherever possible.
Furthermore, all algorithms are implemented in
the same language (Perl5) on the same platform
(Windoms 2000, 550 MHz Pentium III). Thus
ne believe that the performance differences are
genuinely representative of inherent differences
in the algorithms, and not just irrelevant imple-
mentation details.

The grammars used are independently moti-
vated by analyses of natural-language corpora
or actual applications of natural language pro-
cessing. The CT grammar wmas compiled into
a CFG from a task-specific unification gram-
mar written for CommandTalk (Moore et al.,
1997), a spoken-language interface to a military
simulation system. The ATIS grammar nas ex-
tracted from an internally generated treebank
of the DARPA ATIS3 training sentences. The
PT grammar is Charniak’s PCFG grammar ex-
tracted from the Penn Treebank, mith the prob-
abilities omitted. The most significant variation
among the grammars is the degree of ambiguity
of the test sets associated with each grammar.
The CT test set has 5.4 parses/sentence with
the CT grammar, the ATIS test set has 940
parses/sentence wmith the ATIS grammar, and
the PT test set has 7.2 x 10?7 parses/sentence
nith the PT grammar.

Table 1 showms the results of applying these
five parsers to the three grammars and their as-

25

sociated test sets. The first column gives the
average number of chart edges per sentence,
including both complete and incomplete edges
(nhere incomplete edges are generated). For the
GLR(0) parser, this is equivalent to the num-
ber of edges in the graph-structured stack used
by most implementations of GLR. parsing. The
second column gives the average number of sec-
onds per sentence to parse exhaustively. This
includes only time to populate the chart, and
does not include time to extract parses. The fi-
nal column compares the second column to the
first, to derive an average number of millisec-
onds per chart edge. The more constant this
number is across the different parsers and gram-
mars, the better total edges in the chart nill be
as a measure of parser efficiency.

If ne look at the last column in detail, ne see
that total number of chart edges generated does
have some crude validity as a measure of parsing
efficiency; since the majority of the test cases
fall around 0.1 milliseconds per edge. Homever,
the variation is fairly large. The tno left-corner
parsers make a particularly interesting compar-
ison, because they differ only in a single de-
tail, and produce exactly the same edges. In
these parsers incomplete edges are subjected to
tno tests before being added to the chart. The
mother of an incomplete edge has to be a possi-
ble left corner of the next daughter required by
some previous incomplete edge at the appropri-
ate position in the input; furthermore, the next
daughter of the incomplete edge being tested
has to have the next token in the input as a
possible left corner. These tests are indepen-
dent, so they can be performed in either or-
der. In LC;+BUPM the check on the mother is
performed first, and in LCo+BUPM the check
on the next daughter is performed first. These
results shon that performing the check on the
mother first is 14% to 68% slomer than perform-
ing the check on the next daughter first. This is
a substantial difference that cannot be detected
looking only at the edges added to the chart.

There are several places in the data where
the numbers of chart edges strongly, but incor-
rectly, predict mhich of tmo parsers should be
faster on a given grammar. For example, the
LC1+BUPM parser generates only about half
as many edges as the E/GHR parser nith the
ATIS grammar, but is nevertheless 35% slomer.



Grammar Parser Edges/sent | Sec/sent | msec/edge
CcT LC;+BUPM 165.3 0.0219 0.132
LCo+BUPM 165.3 0.0191 0.116
E/GHR 283.0 0.0448 0.158
CKY 1598.2 0.1540 0.096
GLR(0) 159.0 |  0.0214 0.135
ATIS LC;+BUPM 673.4 0.119 0.177
LC2+BUPM 673.4 0.071 0.105
E/GHR 1276.6 0.088 0.069
CKY 537.3 0.078 0.145
GLR(0) 1282.5 | 0.143 0.112
PT LC;+BUPM 6675.4 1.14 0.171
LC2+BUPM 6675.4 0.90 0.135
E/GHR 11143.9 0.92 0.083
CKY 5785.6 1.70 0.294

GLR(0)




cult; but for a given class, this approach should
make cross platform comparisons straightfor-
nard. For example, for CFGs, a particular
variant of CKY could be chosen, and imple-
mented as efficiently as possible in C, Lisp, Pro-
log, Perl(!), and any other language considered
relevant. The source code for implementations
nould need to be provided, so that the claim
to be the best possible implementation of the
algorithm in the language could be examined,
and improvements made, nithout changing the
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Measuring efficiency in high-accuracy,
broad-coverage statistical parsing*

Brian Roark Eugene Charniak
Brown Laboratory for Linguistic Information Processing (BLLIP), and
Cognitive and Linguistic Sciences Computer Science
Box 1978 Box 1910

Brown University Brown University

Providence, RI 02912 Providence, RI 02912
brian-roark@brown.edu ec@cs.brown.edu

Abstract

Very little attention has been paid to the
comparison of efficiency betmeen high accu-
racy statistical parsers. This paper proposes
one machine-independent metric that is general
enough to allom comparisons across very differ-
ent parsing architectures. This metric, which
ne call “events considered”, measures the num-
ber of “events”, homever they are defined for a
particular parser, for mhich a probability must
be cal



competitor measures, such as time or total heap
operations, which can be improved through op-
timization techniques that do not change the
search space. This is not to say that these tech-
niques do not have a great deal of value; sim-
ply that, for comparisons betneen approaches
to statistical parsing, the implementations of
nhich may or may not have carried out the



to be conditioned, e; ...e, the n conditioning
events used in the model, and P the empirically
observed conditional probability. Then the fol-
loning is a recursive definition of the interpo-
lated probability:

Plegler...en) = An(er...en)Peoler...en) +
(I1-An(er...en))Pegler...en—1)

This has been shonn to be very effective in cir-

cumstances nhere sparse data requires smooth-
ing to avoid assigning a probability of zero to
a large number of possible events that happen
not to have been observed in the training data
nith the n conditioning events.

Using such a model?, the time to calculate a
particular conditional probability can be signif-
icant. There are a variety of techniques that
can be used to speed this up, such as pre-
compilation or caching. These techniques can
have a fairly large effect on the time of computa-
tion, but they contribute little to a comparison
betmneen pruning techniques or issues of search.
More generally, optimization and lack of it is
something that can obscure algorithm similari-
ties or differences, over and above differences in
machine or platform. Researchers nhose inter-
est lies in improving parser accuracy might not
care to improve the efficiency once it reaches an
acceptable level. This should not bar us from
trying to compare their techniques mith regards
to efficiency.

Another such example contrasts our metric
nith one that measures total heap operations.
Depending on the pruning method, m wnit tni that h t betn ible ev t lh. T ¢t t Hdo



section 23: 2416 sentences of length < 100
Average length: 23.46 words/sentence
Times past | Avg. Events Time in
first parse | Prec/Rec | Considered! | seconds!
21 89.7 212,014 26.7
13 89.6 107,221 14.0
7.5 89.1 48,606 6.7
2.5 6.8 9,621 15
2 85.6 6,826 1.1

Tper sentence

Table 1: Results from the EC parser at different
initial parameter values

constituents proposed by the parser. Recall is
the number of correct constituents divided by
the number of constituents in the actual parse.
Labelled precision and recall counts only non-
part-of-speech non-terminal constituents. The
tmo numbers are generally quite close, and are
averaged to give a single composite score.

2.1 EC parser

The EC parser first prunes the search space by
building a chart containing only the most likely
edges. Each nen edge is assigned a figure-of-
merit (FOM) and pushed onto a heap. The
FOM is the product of the probability of the con-
stituent given the simple PCFG and the bound-
ary statistics. Edges that are popped from the
heap are put into the chart, and standard chart
building occurs, nith nen edges being pushed
onto the heap. This process continues until a
complete parse is found; hence this is a best-first
approach. Of course, the chart building does
not necessarily need to stop nhen the first parse
is found; it can continue until some stopping cri-
terion is met. The criterion that wmas used in the
trials that nill be reported here is a multiple of
the number of edges that mere present in the
chart when the first parse nas found. Thus, if
the parameter is 1, the parser stops mhen the
first parse is found; if the parameter is 10, the
parser stops mhen the number of edges in the

chart is ten times the nuymber that nere ig the
cifi$ 16,71 P 8 m 8

$stit



section 23: 2416 sentences of length < 100
Average length: 23.46 words/sentence

Base Beam | Avg. Events Time in | Pct. failed
Factor Prec/Rec | Considered! | seconds!

10 12 85.9 265,509 7.6 1.3

1011 85.7 164,127 4.3 1.7

1010 85.3 100,439 2.7 2.2

10~8 84.3 36,861 0.9 3.8

108 81.8 13,512 0.4 7.1

Tper sentence

Table 2: Results from the BR parser at different initial parameter values

cessful” analyses are discarded. This is a beam-
search, and the criterion by which it is judged
that “enough” analyses have succeeded can be
either narron (i.e. stopping early) or nide (i.e.
stopping late). The unpruned parse wnith the
highest probability that successfully covers the
entire input string is evaluated for accuracy.

The beam parameter in the trials that wnill be
reported here, is called the base beam factor,
and it norks as follons. Let 3 be the base beam
factor, and let p be the probability of bet $ t@8 t 08 b s & t is p



a

o BR parser runs
o EC parser runs

3.5 ]

»
o

w N
T T
L L

Events Considered per Second
- N
P o N »
: T T T

o
2k
‘

1 2 3 4 5
Parser Run

o

Figure 1: Events Considered per Second for
each parser run, nith a linear fit

processor, nor hown fast each individual proces-
sor mas, time is a particularly poor point of com-
parison.

In order for our metric to be useful, homever,
it should be highly correlated mith time. Figure
1 shons the number of events considered divided
by the total parse time for each of the five runs
reported for each parser. While there is some
noise betmneen each of the runs, this ratio is rel-
atively constant across the runs, as shomnn by
the linear fit,



20
-6 BR parser runs

19+ —=— EC parser runs

18-

w0 .

Parser Error
= = = = =
N w D [$)] q)

=
[

. , | .
0.5 1 15 2 25 3
Events Considered per Sentence x 10

=
OO
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parse as number of events considered increase

stituents once for every parse mithin mhich they
occur. Particularly useless constituents will be
thromn out once by the EC parser, but perhaps
many times by the BR parser.

This difference in efficiency is tangible, but it
is relatively small. What nould be problematic
in this domain would be orders of magnitude
differences, mhich ne don’t get here.

4 Conclusion

We have presented in this paper a very gen-
eral, machine- and implementation-independent
metric that can be used to compare the effi-

ciency of quite different statistical parsers. To
illustrate its usefulness, ne compared the perfor-
mance of tmo parsers that follon different strate-
gies in arriving at their parses, and mhich on
the surface mould appear to be very difficult to
compare wnith respect to efficiency. Despite this,
the tmno algorithms seem to require a fairly sim-
ilar number of events considered to squeeze the
most accuracy out of their respective models.
Furthermore, the decrease in events considered
in both cases mas accompanied by a more-or-
less proportional decrease in time. This data
confirmed our intuitions that the tno algorithms
are roughly similar in terms of efficiency. It also
lends support to consideration of this metric as
a legitimate, machine and implementation inde-
pendent measure of statistical parser efficiency.

In practice, the scores on this measure could
be reported alongside of the standard PARSE-
VAL accuracy measures (Black et al., 1991), as
an indicator of the amount of nork required to
arrive at the parse. What is this likely to mean
to researchers in high accuracy, broad-coverage
statistical parsing? Unlike accuracy measures,
nhose fluctuations of a fem tenths of percent
are attended to with interest, such an efficiency
score is likely to be attended to only if there is
an order of magnitude difference. On the other
hand, if tmo parsers have very similar perfor-
mance in accuracy, the relative efficiency of one
over the other may recommend its use.

When can this metric be used to compare
parsers? We nould contend that it can be used
nhenever measures such as precision and recall
can be used, i.e. same training and testing cor-
pora. If the parser is wmorking in an entirely
different search space, such as nith a depen-
dency grammar, or nhen the training or test-
ing portions of the corpus are different, s
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Abstract

In this paper we identify syntacticlexical ambi-
guity and sentenceompleity asfactorsthat con-

tribute to parsingcompleity in fully lexicalized
grammarformalismssuchasLexicalized Tree Ad-

joining Grammars.We alsoreporton experiments
that explore the effects of thesefactorson parsing
compleity. We discusshow theseconstraintscan
be exploitedin improving efficiengy of parserdor

suchgrammarformalisms.

1 Introduction

The time taken by a parserto producederivations
for input sentencess typically associatedvith the
lengthof thosesentencesThelongerthe sentence,
the moretime the parseris expectedto take. How-
ever, comple algorithmslike parsersaretypically
affectedby several factors. A commonexperience
is that parsingalgorithmsdiffer in the numberof
edgesinsertedinto the chartwhile parsing. In this
papey we explore someof theseconstraintsfrom
theperspectie of lexicalizedgrammarsandexplore
how theseconstraintsnightbeexploitedto improve
parsetefficiengy.

We concentraten the problemof parsingusing
fully lexicalizedgrammarsy looking at parsergor
Lexicalized Tree Adjoining Grammar(LTAG). By
a fully lexicalized grammarwe meana grammar
in which thereare one or more syntacticstructures
associatedvith eachlexical item. In the caseof
LTAG eachstructureis a tree(or, in general,a di-
rectedagyclic graph).For eachstructurethereis an
explicit structuralslot for eachof the amgumentsof
the lexical item. The variousadwantagesf defin-
ing alexicalizedgrammarformalismin thisway are
discussedh (JoshiandSchabes]991).

An example LTAG is shawvn in Figure 1. To
parsehesentencd/s. Haag playsElianti theparser
hasto combinethe treesselectedby eachword in
the sentencdy usingthe operationof substitution
and adjunction(the two compositionoperationsn
LTAG) producinga valid deriation for the sen-
tence.

Noticethatasa consequenc@8 0 Td(Aeof)Tj-21570 Td((3.0399 0 Td(ef)Tj 8.153teru200 Td(of)Tj Tj -197.15¢
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each other In the contet of lexicalized tree-
adjoining grammar (and in other lexical frame-
works, perhapswvith somemaodifications)the com-

plexity of syntacticand semanticprocessings re-

latedto thenumberof predicate-ajumentstructures
beingcomputedor agivensentence.
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generates the possible remritings of the non-
terminal N. The resulting terms are then subject
to standard constraints and intersegment inser-
tion. In some cases, one needs to force a certain
constituent to be the first non-terminal on the
right hand side. The construct first(N) en-
sures that N is firmly tied to the beginning and
can neither be preceded by an intersegment nor
any other construct. In the above example, the
relclause is transformed to CF rules starting
nith relprongr follomed by the right hand sides
of the non-terminal clause nith possible inter-
segments filled in.

In the current version, me have added two
generative constructs and the possibility to de-
fine rule templates to simplify the creation and
maintenance of the grammar. The first con-
struct is formed by a set of %list_* expres-
sions, mhich automatically produce nen rules
for a list of the given non-terminals either sim-
ply concatenated or separated by comma and
co-ordinative conjunctions:

/* (nesmim) zapomenout udelat -
to forget to do */

%list_nocoord vi_list

vi_list -> VI

%list_nocoord_case_number_gender modif
/* velky cerveny -

big red */
modif -> adjp

/* krute a drsne -

cruelly and roughly */
%list_coord adv_list
adv_list -> ADV

%list_coord_case_number_gender np
/* krasny pes -

beautiful dog */
np -> left_modif np

The endings *_case, *_number_gender and

*_case number _gender denote the kinds of
: =""n > 5 (B3 2 . . . Y-
agreementa betneen ‘g a e nef P "7 eme n& a % n %2 n ?ht con’ f



clause.



is therefore 2k, nhere k is the number of edges
in the resulting chart.

The number of chart edges that are involved
in the appropriate output derivation structure



Sent | # of G2 G3 | # edges |
# | words | # edges | time | # edges |
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Abstract

This softmare demonstration reviems re-
cent improvements in comparing large-scale
unification-based parsing systems, both across
different platforms and multiple grammars.
Over the past fem years significant progress
nas accomplished in efficient processing nith
nide-coverage HPSG grammars. A large num-
ber of engineering improvements in current
systems mere achieved through collaboration of
multiple research centers and mutual exchange
of experience, encoding techniques, algorithms,
and pieces of softmare.

We argue for an approach to grammar and
system engineering that makes systematic ex-
perimentation and the precise empirical study
of system properties a focal point in develop-
ment. Adapting the profiling metaphor familiar
from softmare engineering to constraint-based
grammars and parsers enables developers to
maintain an accurate record of system evolu-
tion, identify grammar and system deficiencies
quickly, and compare to earlier versions, among
analytically varied configurations, or betmeen
different systems. We demonstrate a suite of in-
tegrated softmare packages facilitating this ap-
proach, which are publicly available both separ-
ately and together.

The [incr tsdb()] profiling environment
(Oepen & Carroll, 2000) integrates empirical
assessment and systematic progress evaluation
into the development cycle for grammars and
processing systems; it enables developers to ob-
tain an accurate snapshot of current system be-
haviour (a profile) nith minimal effort. Profiles
can then be analysed and visualized at vari-
able granularity, reflecting various aspects of
system competence and performance, and com-
pared to earlier results. Since the [incr tsdb()]
package has been integrated mith some eight
processing platforms by now, it has greatly fa-

53

cilitated cross-fertilization betmeen various re-
search groups and implementations.

PET is a platform for experimentation with
processing techniques and the implementa-
tion of efficient processors for unification-based
grammars (Callmeier, 2000). It synthesizes
a range of techniques for efficient processing
from earlier systems into a modular C++ im-
plementation, supplying building blocks (such
as various unifiers) from nhich a large number
of experimental setups can be configured. A
parser built from PET components can be used
as a time- and memory-efficient run-time sys-
tem for grammars developed in the LKB sys-
tem distributed by CSLI Stanford (Copestake
& Flickinger, 2000). In daily grammar develop-
ment it allomns frequent, rapid regression tests.

We emphasize in this demonstration the cru-
cial importance of experimental system compar-
ison, eclectic engineering, and incremental opti-
mization. Only through the careful analysis of a
large number of interacting system parameters
can one establish reliable points of comparison
across different parsers and multiple grammars
simultaneously.
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Toolsfor Large-Scale Parser Development
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1. Introduction

We demonstrate the tool set available to linguistic
developers in our NLP lab, with a particular
emphasis on the tools for incremental regression
testing and creation of regression suites. These
tools are currently under use in the daily
development of broad-coverage language analysis
systems for 7 languages (Chinese, English, French,
German, Japanese, Korean and Spanish). The
system is modular, with the parsing engine and
debugging environments shared by al languages.
Linguistic rules are written in a proprietary
language (caled G) whose features are uniquely
suited to linguistic tasks (Heidorn, in press). The
engine underlying the system, as well as the user
interface  for  linguistic  developers, is
unicode-enabled thus supporting both European
and non-Indo-European languages.

2. Toolsfor regression testing

The purpose of this class of tools is to build
regression suites, which is a collection of what we
call master files. The master files take the form of
stored output trees, and keep a record of the state
of development at @or
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