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1. Introduction

Over the past decades, the policy and scientific communities have acknowledged that the
achievement of long-term climate objectives is contingent upon the ability of environmental pol-
icy to trigger technology improvements (Hoffert et al., 2002; Popp, 2002). In the policy arena,
the deployment of environmental innovations is put to the fore in the action plan foreseen by the
European Green Deal (COM(2019) 640 final) (EC, 2019) and in various policy packages such
as the European Emissions Trading Scheme (Directive 2003/87/







Spillovers from dirty technologies have a negative impact on the generation of clean technolo-
gies. Their analysis also includes grey patents, which aim to improve fuel efficiency, the stock
of which is positively associated with green patenting. Calel and Dechezleprêtre (2016) provide
another analysis built upon a difference-in-difference matching procedure. They estimate the im-
pact of the European Union Emissions Trading System (ETS) on firm patenting behaviour, find-
ing a positive impact on low-carbon technologies. The effect of the ETS on (British) regulated
firms’ inventive activities is further investigated by Calel (2020), who finds this cap-and-trade
policy spurs investment and generation of green inventions rather than the adoption of already-
existing clean technologies.

We complement this literature by avoiding a strict dichotomous relation between green and
non-green technologies: in our framework, the latter do not necessarily substitute the former and
we instead directly consider the complementarity between these two groups of inventions. In this
sense, expanding on the idea that green technological solutions may build upon technologies that
are not sustainable per se, we contribute to the debate on the direction of technological change,
which may not necessarily be away from non-green technologies.

We also contribute to the very related and partially overlapping literature that investigates the
extent to which the development of environmentally related technologies comes at the expense of
other technological domains. For instance, the analysis offered Popp and Newell (2012) shows
that patenting in the alternative energy field results in a decrease in inventive activities in other
areas. Other studies look more closely at whether this crowding-out mechanism is facilitated
by the implementation of policy actions. Some studies directly investigate the role played by
environmental policy and provide evidence of a crowding-out process. Barbieri (2016) finds that
environmental policies—mainly in the form of tax-inclusive fuel prices—redirect technological
change towards green technological fields in the automotive sector. In addition, he finds evidence
that advances in one environmentally related domain crowd out inventive efforts in other green
domains, pointing out that technological competition also affects the green technology realm.
Noailly and Smeets (2015) investigate the effect of fossil fuel prices and renewables market size
on technological change. The latter is found to trigger innovation in renewable energy both at the
intensive and extensive margin and to reduce the fossil fuel–renewable technology gap by favour-
ing entry dynamics. Fossil fuel prices instead affect innovation in renewable energy and fossil
fuel technologies at the intensive margin, in addition to reducing the entry into fossil fuel innova-
tion. Stronger evidence in support of the crowding-out eff



between green and non-green technologies, which may be particularly pivotal to facilitate the
transition towards greener forms of production.

The paper proceeds as follows. Section 2 presents the data and how we measure non-green
interdependent technologies. Section 3 describes the empirical strategy, and Section 4 reports
and discusses the results. Finally, Section 5 offers some concluding remarks.

2. Data and measures

2.1. Data

The empirical analysis builds on an original dataset that gathers data from different sources.
Our primary source is the wealth of information provided by patents. We collect all patent docu-
ments included in the Worldwide Patent Statistical Database (Patstat, version Spring 2019)4 and
retrieve the patent family identification number. Patent families include patent applications that
refer to the same invention and are filed in different patent offices to seek intellectual property
rights protection in multiple countries.5 For each patent family, we obtain (i) the earliest priority
year to capture when the first patent application was filed with any patent office; (ii) the Coop-
erative Patent Classification (CPC) codes that describe the technical content of the inventions,6

and (iii) the inventor identification number in order to geolocalise the patenting activity.
Following previous studies (e.g. Calel, 2020) we detect green technological efforts through a

patent classification-based search using the CPC Y02 code: an additional code that is assigned



2.2. Measuring complementary non-green technologies
The first step in our empirical analysis is to define complementary non-green technologies.

To this aim, we resort to a network analysis that identifies the strength of the relation between
green and other technological fields. In our innovation network, the full-digit classification codes
are the nodes and the co-occurrences of these codes within patent families represent the links
between the nodes. Although we rely on the universe of full-digit codes over the 1978–2014
period, our main interest is in the full-digit codes that co-occur with the green ones. Our final
network is made up of more than 45 thousand full-digit codes with more than 13 million connec-
tions. However, the green subnetwork is relatively small, i.e. 235,500 connections among 186
green nodes and between these and almost 30,000 non-green full-digit codes, highlighting that
environmentally related technological change is still in its early phase compared to other innova-
tions (Barbieri et al., 2020b). Figure 1 shows the co-occurrence network between environmental
(green dots) and complementary non-green technologies (orange dots). We can observe that it
is composed of a dense number of green codes that co-occur with other green and non-green
technologies. It is worth noting that some complementary technologies co-occur only with spe-
cific green technologies (those located at the external border of the network) while others are
fundamental for the development of a variety of green technologies, i.e. the internal orange dots.
In addition, knowledge spillovers occur also within the green technological domain, as demon-
strated by the green nodes that are located close to each other in the centre of the network.

FIGURE 1 ABOUT HERE

We define as complementary non-green technologies those with full-digit codes that co-occur
with green classification codes. We label as complementary technologies the full-digit codes
from the year in which they co-occur for the first time with green ones onwards. The rationale
for this measure is found in the recombinant innovation literature that emphasises the role of
the first co-occurrence of two technologies as the premise of subsequent, persistent interactions
(Verhoeven et al., 2016).8



technologies. Finally, CPC C, related to chemistry, is particularly relevant for green technolo-
gies such as the generation of green products, energy production, and adaptation technologies.
Clearly, this is a very broad depiction of the technological pillars of green technologies that does
not consider the heterogeneity within the macro-technological domains.

FIGURES 2 AND 3 ABOUT HERE

3. Empirical strategy

3.1. The e�ect of complementary non-green technologies on green patents
Having defined how to operationalise and measure non-green complementary technologies,

we now move to the identification of a suitable econometric approach to investigate their impact
on green technological change. A straightforward specification whereby environmentally sus-
tainable technologies are regressed on non-green complementary technologies would be flawed
by a relevant omitted-variable bias due to the fact that we would not be controlling for the con-
founding effect of other green technologies. Indeed, green technologies are expected to bene-
fit from non-green complementary technologies as well as from other green ones (Noailly and
Shestalova, 2017). Nevertheless, the inclusion of green technologies on the right-hand side of
the econometric specification poses a further issue: the endogeneity arising from the inclusion of
an autoregressive component (Anselin, 2003) that captures, in our case, the effect of ‘neighbour-
ing’ green technologies. Given these premises, we borrow from economic geography studies a
spatial econometric approach appropriate for our setting. Following recent developments in the
literature (see Elhorst, 2003, 2014), we adopt a fixed effect spatial autoregressive model (SAR)
based on quasi-maximum likelihood estimation (Belotti et al., 2017) with Driscoll and Kraay
(1998) standard errors. Specifically, we estimate the following model:

git = α + ρ
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3.2. The e�ect of environmental policy on complementary non-green technologies

The second part of our analysis investigates the impact that environmental policies exert on
the development of non-green complementary technologies. The effect of environmental policies
on inventive activity is scrutinised at the country level by exploiting information on patenting
in different fields and the stringency of policy interventions. The chosen level of analysis is
justified by the fact that most environmental policies are implemented at the national level. Thus,
we exploit country-level variation using the OECD’s Environmental Policy Stringency Index
(EPSI) (Botta and Koźluk, 2014). The advantage of this proxy is that (i) it captures a wide
range of flexible and regulatory instruments such as subsidies, taxes, and emission standards in
a single indicator, (ii) it does not focus on just a few flagship sectors but, instead, covers the
whole spectrum of the economy, and (iii) it is correlated to other proxies retrieved in the extant
literature, such as the perceived stringency (Schwab, 2009; Johnstone et al., 2010a). The country-
level analysis is conducted on 23 OECD countries11 over the 1990–2012 period for which the
EPSI is available. The estimation equation is the following:

YL
ct = βEPS Ict + γXct + τt + σc + ϵct (2)

where the dependent variable is the number of technologies—captured by the number of patent
families—in country c at time t. L captures the type of technology, that is, while our inter-
est is on testing the effect of environmental policies on complementary non-green technologies
(COMPAT), we also make sure that the empirical approach we implement provides results that
are aligned with prior evidence on the impact of environmental regulations on green patenting
(GREENPAT) (e.g. Popp, 2002; Johnstone et al., 2010b; Nesta et al., 2014).

EPSI is an OECD indicator of environmental policy stringency, i.e. our key explanatory vari-
able, and β is the parameter of interest. X represents a set of control variables that is inspired
by the literature on the knowledge production function (Griliches, 1979; Pakes and Griliches,
1984) and includes the following variables. We capture the stock of available knowledge and the
patenting propensity of a country through the stock of total patents (PATSTOCK). We further add
a measure of human capital (HC), which reflects the average schooling of the population and is
collected from the Penn World Table (Feenstra et al., 2015). We employ two additional variables
retrieved from OECD data. We control for the fact that the stringency of regulations as well as
patenting activities in green or complementary technologies may be related to the intensity of
greenhouse gas emissions relative to the value added, i.e. environmental efficiency (ENVEFF).
Lastly, we add GDP in constant prices (in US$ 1995) in order to capture the size of the economy.
All variables are taken in log form. Table 1 reports the descriptive statistics.

TABLE 1 ABOUT HERE

The relation of interest may not only be confounded by observable characteristics but also by
unobservable heterogeneity, which is constant over time and varies across countries. Similarly,
certain shocks may have simultaneously affected all countries in our sample due to common

at year t − 1, δ is the depreciation rate, assumed constant at 15% (Hall et al., 2005), and Pt is the number of new patents
in year t.

11Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ire-
land, Italy, Japan, Netherlands, Norway, Poland, Portugal, Republic of Korea, Spain, Sweden, United Kingdom, United
States.

9



circumstances that change over time (e.g. macroeconomic conditions, etc.). To address these
issues, we add country (σ) and time fixed effects (τ). Finally, ϵ is the error term.

The relationship between environmental policy and our dependent variables may suffer from
endogeneity issues, however. First, we cannot exclude a reverse causality issue in which the num-
ber of patents influences policy stringency. We may suppose different configurations for such a
relation. Let us focus first on the case of green patents and their relation to policy stringency.
Extensive patenting in green technologies within the national industrial system may induce pol-
icymakers to increase stringency to promote internal industries and to create a barrier to foreign
competitors (e.g. Rodrik, 2014). We cannot exclude the opposite direction, however, which
would lead to a downward-biased estimation. A high level of green patents may lead to a lower
EPSI level. From a normative point of view, we may expect that policymakers support tech-
nologies only in the initial phase of their development, rather than in their maturity (Acemoglu
et al., 2012). This has some empirical evidence in the relaxation of market-based instruments in
leading countries like Germany and Denmark (Nesta et al., 2018). In fact, the possible existence
of lower levels of the EPSI in light of extensive patenting in green technologies may also be
explained by the way in which our policy variable is created. Lower levels of the EPSI do not
necessarily mean an absolute reduction in stringency. Indeed, EPSI is ultimately a relative score
of stringency given the use of in-sample distribution to create the bands of stringency for each
item in the composite indicator. In other terms, a given country may be assigned a score that
changes (e.g. reduces) due to the (stricter) implementation of policies in other countries across
years.

Let us now discuss the potential reverse causality affecting the relation between non-green,
complementary patents and the EPSI. Mirroring what was reported above, we can see two di-
rections. Considering that complementary patents are essentially non-green technologies, one
may argue that extensive patenting in non-environmental technologies may lead policymakers



captures the relevance of smaller parties and hence the extent to which a government is stable
to political challenges posed by parties within the ruling majority (if any) or by the opposition
parties. Our contention is that elections that produce stable results with a clear ruling party re-
duce the risk that the governing majority is contended. This, in turn, allows the executive to
implement policies, such as stringent environmental regulations, that do not have an immediate
and short-term political pay-off (Nesta et al., 2014). At the same time, the stability of the govern-
ment—due to the greater political power of the largest party—does not directly impact patenting
in green and complementary activities.

4. Results

4.1. The role of complementary non-green technologies in the growth of environmental patents
The first part of the empirical exercise focuses on the contribution of technological domains

to the development of green technologies. Specifically, we are interested in the role played by
(other) green and complementary non-green technologies. To do so, we focus on two main coeffi-
cients and on their difference. First we look at ρ, which captures the impact of growth in all other
green patents on the growth of the focal green technology to which they are connected through
a CPC co-occurrence matrix as described in Section 2. Second, we are interested in the effect
of the growth of complementary technologies on that of green patents (LeSage, 2008; Belotti
et al., 2017). The overall impact of a given observable explanatory variable can be decomposed
into two eff





estimation emphasise that environmental policy stringency does not lead to a displacement of
complementary non-green technologies. In other terms, environmental policies do not trigger
green technological change at the expense of inventions that may work as technological pillars
for green technologies. Given the constraints of our empirical setting, we cannot advance defini-
tive conclusions as to whether this absence of effectiveness will result in a reduced pace of green
patenting compared to a counterfactual scenario also characterised by a positive effect on com-
plementary non-green technologies. Similarly, we cannot provide a full assessment of the entire
policy framework of a given country.

TABLE 3 ABOUT HERE

4.3. Robustness checks
We test the robustness of our results in a number of ways. Let us first concentrate on the

part of our analysis that concerns the extent to which green and complementary non-green tech-
nologies contribute to the development of environmentally sound inventions. The first robustness
check we implement concerns the way in which we capture complementary non-green technolo-
gies. Our main results adopt an inclusive approach to identify complementary non-green patents:
we include families with at least one technology class that has been connected with green ones,
and we weight the invention for the share of non-green CPC classes. In other terms, we mea-
sure complementary non-green technologies by excluding the fraction of knowledge connected
to green technological domains. An example may elucidate: if a patent family is assigned to
one green and nine non-green complementary full-digit codes, the contribution of the patent to
the latter group is 90%. The adoption of fractional counting allows us to consider the non-green
technological component of each invention; however, we also implement a stricter definition of



we redefine the relevant complementary technologies that are not green on a yearly basis. Fi-
nally, we check whether the results are robust to applying a yearly and stricto sensu definition
of complementary technologies. In all of these attempts, we continue to find a non-significant
effect of environmental policies on complementary non-green technologies.

TABLES 4, 5 and 6 ABOUT HERE

5. Conclusions

Green technology development is pivotal to the decarbonisation of economies and to their
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Johnstone, N., Haščič, I., Popp, D., 2010b. Renewable energy policies and technological innovation: evidence based on
patent counts. Environmental and Resource Economics 45, 133–155.

Kauffman, S.A., et al., 1993. The origins of order: Self-organization and selection in evolution. Oxford University Press,
USA.

Keller, W., 2001. Knowledge spillovers at the world’s technology frontier. Available at SSRN 271703 .
LeSage, J., 2008. An introduction to spatial econometrics. Revue d’économie industrielle n° 123, 19–44.
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Tables and Figures

Figure 1: Technology co-occurrence network

Notes: CPC full-digit co-occurrence network over the entire period. Green nodes refer to green technological classifica-
tion codes whereas orange nodes represent complementary non-green full-digit codes

Figure 2: Number of technology classification codes that connect for the first time with green
technologies

20



Figure 3: Technological domains that support green inventive activities

Notes: Each graph corresponds to a Y02 subclass and measures the intensity of the co-occurrence with other one-digit
codes. A=Human necessities; B=Performing operations; transporting; C=Chemistry; metallurgy; D=Textiles; paper;
E=Fixed constructions; F=Mechanical engineering; lighting; heating; weapons; blasting engines or pumps; G=Physics;
H=Electricity; Y=General tagging of new technological developments; general tagging of cross-sectional technologies
spanning over several sections of the IPC; technical subjects covered by former USPC cross-reference art collections
[XRACs] and digests
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Table 1: Descriptive statistics

Obs Mean Std Dev Min Max



Table 2: SAR model estimation

Complementary
non-green
(β)

Other green
(ρ)

Patent Stock
(Stock)

Obs R2 Matrix year Direct effect Direct effect
vs ρ

Panel 1 (1979-1988) 0.434*** 0.148*** -0.000365*** 750 0.196 1978 0.440*** 19.17***
(0.0518) (0.0398) (5.02e-05) (0.0535)

Panel 2 (1980-1989) 0.470*** 0.115*** -0.000323*** 880 0.109 1979 0.474*** 34.43***
(0.0471) (0.0374) (4.80e-05) (0.0484)

Panel 3 (1981-1990) 0.457*** 0.136*** -0.000482*** 1,260 0.078 1980 0.461*** 34.07***
(0.042) (0.035) (5.91e-05) (0.0432)

Panel 4 (1982-1991) 0.453*** 0.192*** -0.000659*** 1,310 0.054 1981 0.459*** 22.87***
(0.0425) (0.0346) (6.59e-05) (0.0437)

Panel 5 (1983-1992) 0.471*** 0.168*** -0.000825*** 1,410 0.038 1982 0.476*** 29.25***
(0.0433) (0.0354) (7.02e-05) (0.0446)

Panel 6 (1984-1993) 0.491*** 0.131*** -0.000837*** 1,460 0.036 1983 0.495*** 38.43***
(0.047) (0.0333) (7.42e-05) (0.0484)

Panel 7 (1985-1994) 0.509*** 0.109*** -0.000685*** 1,490 0.038 1984 0.513*** 41.32***
(0.0497) (0.0366) (7.48e-05) (0.0512)

Panel 8 (1986-1995) 0.561*** 0.149*** -0.000494*** 1,470 0.049 1985 0.566*** 40.06***
(0.0513) (0.0393) (7.28e-05) (0.0529)

Panel 9 (1987-1996) 0.559*** 0.178*** -0.000292*** 1,420 0.077 1986 0.566*** 39.29***
(0.0502) (0.0338) (6.52e-05) (0.0518)

Panel 10 (1988-1997) 0.647*** 0.165*** -0.000241*** 1,470 0.081 1987 0.653*** 50.71***
(0.0544) (0.0393) (6.09e-05) (0.0561)

Panel 11 (1989-1998) 0.671*** 0.198*** -0.000168*** 1,470 0.117 1988 0.680*** 48.16***
(0.0556) (0.039) (5.34e-05) (0.0574)

Panel 12 (1990-1999) 0.593*** 0.195*** -0.000102** 1,480 0.121 1989 0.600*** 33.55***
(0.0565) (0.0387) (4.81e-05) (0.0584)

Panel 13 (1991-2000) 0.546*** 0.192*** -9.18e-05** 1,610 0.109 1990 0.553*** 28.52***
(0.0551) (0.0365) (4.29e-05) (0.057)

Panel 14 (1992-2001) 0.535*** 0.137*** -0.000119*** 1,650 0.102 1991 0.539*** 38.59***
(0.0512) (0.0374) (3.76e-05) (0.0527)

Panel 15 (1993-2002) 0.533*** 0.186*** -0.000123*** 1,600 0.102 1992 0.539*** 30.97***
(0.0489) (0.0384) (3.40e-05) (0.0505)

Panel 16 (1994-2003) 0.543*** 0.166*** -0.000103*** 1,590 0.118 1993 0.549*** 44.59***
(0.0452) (0.0334) (3.04e-05) (0.0466)

Panel 17 (1995-2004) 0.531*** 0.237*** -0.000123*** 1,630 0.103 1994 0.541*** 29.38***
(0.0443) (0.0322) (2.81e-05) (0.0458)

Panel 18 (1996-2005) 0.599*** 0.190*** -0.000115*** 1,670 0.108 1995 0.606*** 55.48***
(0.0436) (0.0332) (2.71e-05) (0.0448)

Panel 19 (1997-2006) 0.641*** 0.239*** -0.000106*** 1,640 0.127 1996 0.651*** 54.17***
(0.0429) (0.0343) (2.47e-05) (0.0441)

Panel 20 (1998-2007) 0.701*** 0.140*** -9.89e-05*** 1,690 0.141 1997 0.706*** 105.1***
(0.0429) (0.0334) (2.25e-05) (0.0439)

Panel 21 (1999-2008) 0.666*** 0.206*** -7.48e-05*** 1,730 0.153 1998 0.673*** 67.16***
(0.0428) (0.0364) (1.99e-05) (0.0439)

Panel 22 (2000-2009) 0.633*** 0.174*** -5.70e-05*** 1,750 0.181 1999 0.638*** 68.11***
(0.042) (0.0361) (1.75e-05) (0.0431)

Notes: The dependent variable is the 5-year growth of green patents. Driscoll and Kraay’s (1998) standard errors, robust to heteroskedasticity and serial and
cross-sectional correlation, in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 3: Country-level regression results

GREENPAT COMPAT
Since 1st
connection

Panel A - Country and time fixed e�ects included
EPSI -0.058 0.044

(0.048) (0.034)

PATSTOCK 0.775*** 0.728***
(0.054) (0.047)

HC -0.139 2.590***
(0.954) (0.671)

ENVEFF 0.177 0.234**
(0.141) (0.102)

GDP -0.113 0.315
(0.256) (0.257)

R2 0.851 0.936
F 558.1 229.9
Panel B - IV with country and time fixed e�ects included
EPSI 0.714** 0.233

(0.316) (0.326)

PATSTOCK 0.777*** 0.726***
(0.076) (0.056)

HC 0.370 2.711***
(0.996) (0.758)

ENVEFF 0.140 0.228*
(0.185) (0.115)

GDP -0.874** 0.138
(0.387) (0.423)

Observations 526 529
R2 0.296 0.734
Panel C - First Stage
POLCOMP -0.011*** -0.011***

(0.002)

Kleibergen-Paap F 31.45 29.71

Notes: The sample includes 23 countries (see Section 3.2) observed over the period 1990-2012 (23 years). Driscoll and Kraay (1998) standard errors, robust to



Table 4: SAR model estimation (complementarity in stricto sensu)

Complementary
non-green
(β)

Other green
(ρ)

Patent Stock
(Stock)

Obs R2 Matrix year Direct effect Direct effect
vs ρ

Panel 1 (1979-1988) 0.385*** 0.261*** -0.0000857 750 0.162 1978 0.399*** 2.896
(0.0683) (0.0374) (0.0000567) (0.0717)

Panel 2 (1980-1989) 0.612*** 0.142*** -0.000130** 880 0.099 1979 0.619*** 37.10***
(0.0669) (0.0371) (0.0000594) (0.0689)

Panel 3 (1981-1990) 0.519*** 0.201*** -0.000231*** 1260 0.059 1980 0.526*** 30.40***
(0.0485) (0.0309) (0.0000619) (0.0501)

Panel 4 (1982-1991) 0.414*** 0.239*** -0.000294*** 1310 0.021 1981 0.422*** 9.283***
(0.0491) (0.0322) (0.0000678) (0.0509)

Panel 5 (1983-1992) 0.471*** 0.243*** -0.000393*** 1410 0.008 1982 0.479*** 15.82***
(0.049) (0.0306) (0.0000715) (0.051)

Panel 6 (1984-1993) 0.521*** 0.229*** -0.000443*** 1460 0.006 1983 0.531*** 22.33***
(0.0543) (0.0299) (0.0000761) (0.0564)

Panel 7 (1985-1994) 0.437*** 0.216*** -0.000457*** 1490 0.001 1984 0.445*** 12.18***
(0.0555) (0.0313) (0.0000766) (0.0575)

Panel 8 (1986-1995) 0.490*** 0.239*** -0.000409*** 1470 0.002 1985 0.498*** 13.80***
(0.059) (0.0335) (0.0000762) (0.0613)

Panel 9 (1987-1996) 0.455*** 0.246*** -0.000312*** 1420 0.006 1986 0.465*** 10.03***
(0.0592) (0.0313) (0.0000736) (0.0617)

Panel 10 (1988-1997) 0.473*** 0.277*** -0.000200*** 1470 0.009 1987 0.483*** 8.830***
(0.0585) (0.033) (0.0000641) (0.0611)

Panel 11 (1989-1998) 0.536*** 0.286*** -0.000110* 1470 0.048 1988 0.549*** 13.35***
(0.0603) (0.0346) (0.000057) (0.063)

Panel 12 (1990-1999) 0.491*** 0.260*** -0.0000189 1480 0.09 1989 0.501*** 10.63***
(0.0628) (0.035) (0.0000513) (0.0653)

Panel 13 (1991-2000) 0.521*** 0.210*** -0.0000353 1610 0.093 1990 0.529*** 20.38***
(0.06) (0.0334) (0.0000453) (0.0621)

Panel 14 (1992-2001) 0.454*** 0.200*** -8.80e-05** 1650 0.056 1991 0.460*** 14.62***
(0.0569) (0.0339) (0.0000411) (0.0589)

Panel 15 (1993-2002) 0.455*** 0.247*** -0.000135*** 1600 0.042 1992 0.463*** 9.325***
(0.0594) (0.0351) (0.0000386) (0.0616)

Panel 16 (1994-2003) 0.420*** 0.260*** -0.000135*** 1590 0.035 1993 0.430*** 6.574**
(0.0558) (0.0318) (0.0000354) (0.0582)

Panel 17 (1995-2004) 0.421*** 0.260*** -0.000143*** 1630 0.033 1994 0.430*** 6.790***
(0.0553) (0.0315) (0.0000333) (0.0575)

Panel 18 (1996-2005) 0.441*** 0.324*** -0.000130*** 1670 0.035 1995 0.455*** 4.157**
(0.0537) (0.0313) (0.0000316) (0.0562)

Panel 19 (1997-2006) 0.515*** 0.336*** -0.000104*** 1640 0.056 1996 0.530*** 9.090***
(0.053) (0.033) (0.0000294) (0.0553)

Panel 20 (1998-2007) 0.542*** 0.302*** -8.23e-05*** 1690 0.081 1997 0.555*** 14.98***
(0.0543) (0.0331) (0.0000273) (0.0564)

Panel 21 (1999-2008) 0.571*** 0.318*** -5.95e-05** 1730 0.104 1998 0.583*** 15.51***
(0.0551) (0.036) (0.0000246) (0.057)

Panel 22 (2000-2009) 0.551*** 0.270*** -5.24e-05** 1750 0.123 1999 0.560*** 19.61***
(0.0536) (0.0351) (0.0000219) (0.0554)

Notes: The dependent variable is the 5-year growth of green patents. Driscoll and Kraay’s (1998) standard errors, robust to heteroskedasticity and serial and
cross-sectional correlation, in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

25



Table 5: SAR model estimation (10-year growth)

Complementary



Table 6: Country-level results with alternative measures of complementary non-green technologies

COMPAT
Since 1st connec-
tion strictu sensu

COMPAT
Yearly connection

COMPAT
Yearly connection
Strictu sensu

Panel A - Country and time fixed e�ects included
EPSI 0.065* 0.024 0.05

(0.033) (0.037) (0.035)

PATSTOCK 0.719*** 0.740*** 0.731***
(0.047) (0.048) (0.048)

HC 2.731*** 1.980*** 2.180***
(0.685) (0.583) (0.598)

ENVEFF 0.253** 0.237** 0.269***
(0.1) (0.099) (0.095)

GDP 0.352 0.384 0.429*
(0.256) (0.245) (0.248)

R2 0.931 0.948 0.942
F 156 376.9 386.7
Panel B - IV with country and time fixed e�ects
EPSI 0.233 0.206 0.19

(0.346) (0.303) (0.325)

PATSTOCK 0.716*** 0.738*** 0.729***
(0.056) (0.056) (0.056)

HC 2.839*** 2.097*** 2.269***
(0.764) (0.684) (0.699)

ENVEFF 0.248** 0.231** 0.264**
(0.113) (0.111) (0.105)

GDP 0.195 0.213 0.297
(0.431) (0.451) (0.474)

Observations 529 529 529
R2 0.726 0.735 0.721
Panel C - First Stage
POLCOMP -0.011***

(0.002)

Kleibergen-Paap F 29.71

Notes: The sample includes 23 countries (see Section 3.2) observed over the period 1990-2012 (23 years). Driscoll and Kraay’s (1998) standard errors, robust to
heteroskedasticity and serial and spatial correlation, in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Appendix

Table A1: First-stage regression results

(GREENPAT) (COMPAT)
EPSI EPSI

POLCOMP -0.011*** -0.011***
(0.002) (0.002)

PATSTOCK 0.015 0.032
(0.046) (0.041)

HC -1.157** -1.089**
(0.491) (0.518)

ENVEFF 0.038 0.023
(0.082) (0.076)

GDP 0.895*** 0.839***
(0.214) (0.223)

R2 0.836 0.836
Kleibergen-Paap F 31.45 29.71
Obs. 526 529
Driscoll and Kraay’s (1998) standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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